Math, asked by SunilamYamini6074, 1 year ago

If x=3sinA and y=4cosA then find the value of √16x²+9y²

Answers

Answered by brainiac177
3


√16x2+9y2
4x2+9y2
4(3sinA)2+9(4cosA)2
4(9sin2A)+9(16cos2A)
36sin2A+144cos2A
Answered by Zaransha
11
Hey there,



Given:
x = 3 \sin \: a \:
y = 4 \cos \: a


To find,

 \sqrt{16 ({x}^{2}) + 9 {(y)}^{2}  }


Substitute the values you have in,

 \sqrt{(16 {(3sin \: a)}^{2})  + 9 {(4\cos \: a) }^{2} }  \\ \\  \\   =  \sqrt{(16)(9) { \sin }^{2}a + (9)(16) { \cos }^{2}a  } \\  \\  \\  =  \sqrt{(16)(9)( { \sin }^{2}a +  { \cos }^{2} a })


As you might me familiar with:
 { \sin }^{2} x +  { \cos }^{2} x = 1

Using this identity,
we'll be left with,

 =  \sqrt{(16)(9)}   \\  \\   =4 \times 3 \\  = 12


Therefore your required answer will be 12.
Similar questions