If x=3sinA and y=4cosA then find the value of √16x²+9y²
Answers
Answered by
3
√16x2+9y2
4x2+9y2
4(3sinA)2+9(4cosA)2
4(9sin2A)+9(16cos2A)
36sin2A+144cos2A
Answered by
11
Hey there,
Given:
![x = 3 \sin \: a \: x = 3 \sin \: a \:](https://tex.z-dn.net/?f=x+%3D+3+%5Csin+%5C%3A+a+%5C%3A+)
![y = 4 \cos \: a y = 4 \cos \: a](https://tex.z-dn.net/?f=y+%3D+4+%5Ccos+%5C%3A+a+)
To find,
![\sqrt{16 ({x}^{2}) + 9 {(y)}^{2} } \sqrt{16 ({x}^{2}) + 9 {(y)}^{2} }](https://tex.z-dn.net/?f=+%5Csqrt%7B16+%28%7Bx%7D%5E%7B2%7D%29+%2B+9+%7B%28y%29%7D%5E%7B2%7D++%7D+)
Substitute the values you have in,
![\sqrt{(16 {(3sin \: a)}^{2}) + 9 {(4\cos \: a) }^{2} } \\ \\ \\ = \sqrt{(16)(9) { \sin }^{2}a + (9)(16) { \cos }^{2}a } \\ \\ \\ = \sqrt{(16)(9)( { \sin }^{2}a + { \cos }^{2} a }) \sqrt{(16 {(3sin \: a)}^{2}) + 9 {(4\cos \: a) }^{2} } \\ \\ \\ = \sqrt{(16)(9) { \sin }^{2}a + (9)(16) { \cos }^{2}a } \\ \\ \\ = \sqrt{(16)(9)( { \sin }^{2}a + { \cos }^{2} a })](https://tex.z-dn.net/?f=+%5Csqrt%7B%2816+%7B%283sin+%5C%3A+a%29%7D%5E%7B2%7D%29++%2B+9+%7B%284%5Ccos+%5C%3A+a%29+%7D%5E%7B2%7D+%7D++%5C%5C+%5C%5C++%5C%5C+++%3D++%5Csqrt%7B%2816%29%289%29+%7B+%5Csin+%7D%5E%7B2%7Da+%2B+%289%29%2816%29+%7B+%5Ccos+%7D%5E%7B2%7Da++%7D+%5C%5C++%5C%5C++%5C%5C++%3D++%5Csqrt%7B%2816%29%289%29%28+%7B+%5Csin+%7D%5E%7B2%7Da+%2B++%7B+%5Ccos+%7D%5E%7B2%7D+a+%7D%29++)
As you might me familiar with:
![{ \sin }^{2} x + { \cos }^{2} x = 1 { \sin }^{2} x + { \cos }^{2} x = 1](https://tex.z-dn.net/?f=+%7B+%5Csin+%7D%5E%7B2%7D+x+%2B++%7B+%5Ccos+%7D%5E%7B2%7D+x+%3D+1)
Using this identity,
we'll be left with,
![= \sqrt{(16)(9)} \\ \\ =4 \times 3 \\ = 12 = \sqrt{(16)(9)} \\ \\ =4 \times 3 \\ = 12](https://tex.z-dn.net/?f=+%3D++%5Csqrt%7B%2816%29%289%29%7D+++%5C%5C++%5C%5C+++%3D4+%5Ctimes+3+%5C%5C++%3D+12+)
Therefore your required answer will be 12.
Given:
To find,
Substitute the values you have in,
As you might me familiar with:
Using this identity,
we'll be left with,
Therefore your required answer will be 12.
Similar questions