Math, asked by shrastiagarwal, 9 months ago

if x=3t²-1 ,y=t³-t then dy/dx is equal to​

Answers

Answered by Anonymous
36

Given :

x=3t²-1 and y=t³-t

To find :

dy/dx

Solution:

We have to find dy/dx

\sf{x=3t^2-1}

Now Differentiate it with respect to t

\sf{\dfrac{dx}{dt}=\dfrac{d(3t^2)}{dt}-\dfrac{d(1)}{dt}}

\sf{\dfrac{dx}{dt}=6t}....(1)

\sf{y=t^3-t}

\sf{\dfrac{dy}{dt}=\dfrac{d(t^3)}{dt}-\dfrac{d(t)}{dt}}

\sf{\dfrac{dy}{dt}=3t^2-1}...(2)

Now divide equation (1) by (2)

\sf\dfrac{\frac{dx}{dt}}{\frac{dy}{dt}}=\dfrac{6t}{3t^2}

\sf{\dfrac{dx}{dy}=\dfrac{2}{t}}

It is the required solution!

\rule{200}2

Theory :

Parametric Function

if x=f(t) and y =g(t)

Then ,

\sf{\dfrac{dy}{dx}=\dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}}

{\underline{\sf{Formula's}}}

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3) \sf\dfrac{d( \tan \: x)}{dx} =   \sec{}^{2}\: x

 \sf4)  \dfrac{d(e {}^{x}) }{dx}  =  {e}^{x}

Answered by rahulkaushik62002
0

Answer:

here's the right ans hope it's useful for all as follows:::

Attachments:
Similar questions