Math, asked by jindjat, 1 year ago

if x^4+1/x^4 = 119, find the value of x−1/x

Answers

Answered by yahootak
12

Hey, You can find your answer in attachment.

Hope it helps you .

Attachments:
Answered by Darkrai14
187

★ᏀᏆᐯᗴᑎ:-

\sf x^4 + \dfrac{1}{x^4} = 119

★Ͳϴ ҒᏆΝᎠ:-

\sf x - \dfrac{1}{x}

★ᔑᝪしᑌᎢᏆᝪᑎ:-

\sf (a+b)^2 = a^2 + b^2 + 2ab

First, we will find x^2 + \dfrac{1}{x^2}

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= (x^2)^2 + \Bigg ( \dfrac{1}{x^2} \Bigg )^2 + 2 \times x \times \dfrac{1}{x}

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= x^4+ \dfrac{1}{x^4} + 2

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= 119 + 2

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= 121

\sf \implies x^2 + \dfrac{1}{x^2}= \sqrt{121}

\sf \implies x^2 + \dfrac{1}{x^2}= 11

______________________________

Now, we will find x- \dfrac{1}{x}

\sf (a-b)^2 = a^2+b^2-2ab

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = (x)^2 + \Bigg ( \dfrac{1}{x} \Bigg )^2 - 2 \times x \times \dfrac{1}{x}

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = x^2 + \dfrac{1}{x^2} - 2

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = 11 - 2

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = 9

\sf \implies x - \dfrac{1}{x} = \sqrt{9}

\sf \implies x - \dfrac{1}{x} = 3

Hope it helps.

Mark as Brainliest if it helps you☺️

Similar questions