If x^4 + 1/x^4 = 1331 , find x+1/x =?
Attachments:
123134:
simple h bro
Answers
Answered by
5
(x⁴+1/x⁴) =1331
Add 2(x²*1/x²) on both sides,
x⁴+1/x⁴ +2 =1331 +2
(x²+1/x²)² =1333
x²+1/x² =√1333
Add 2(x*1/x) on both sides,
x²+1/x²+2 =√(1333) +2
(x+1/x)² =√(1333) +2
(x+1/x)² =1333^(1/2) +2
x+1/x =√[1333^(1/2) +2]^(1/2)
I hope this will help you
-by ABHAY
Add 2(x²*1/x²) on both sides,
x⁴+1/x⁴ +2 =1331 +2
(x²+1/x²)² =1333
x²+1/x² =√1333
Add 2(x*1/x) on both sides,
x²+1/x²+2 =√(1333) +2
(x+1/x)² =√(1333) +2
(x+1/x)² =1333^(1/2) +2
x+1/x =√[1333^(1/2) +2]^(1/2)
I hope this will help you
-by ABHAY
Answered by
3
(X^2+1/X^2)^2=X^4+1/X^4=2
1331+2=1333
X^2+1/X^2=root1333
now,(X+1/x)^2=X^2+1/X^2+2
root1333+2
1333=(X+1/X)^1/4
X+1/X=(1333)^1/4
1331+2=1333
X^2+1/X^2=root1333
now,(X+1/x)^2=X^2+1/X^2+2
root1333+2
1333=(X+1/X)^1/4
X+1/X=(1333)^1/4
Similar questions