Math, asked by joya56676, 8 months ago

If x^4 + 1/x^4 = 2207 then find x^3 + 1/x^3 ​

Answers

Answered by Anonymous
26

\sf\large\underline\blue{Given:-}

  \\  \sf \: { \huge{.}} \:  \:  {x}^{4} +  \dfrac{1}{ {x}^{4} } = 2207   \\

\sf\large\underline\blue{To\: Find :-}

  \\  \sf \: { \huge{.}} \:  \:  {x}^{3} +  \dfrac{1}{ {x}^{3} } = ?   \\

\sf\large\underline\blue{Identities \: used:-}

  \\  \sf \longrightarrow \:  {(a + b)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab \\

  \\  \sf \longrightarrow \:  {(a + b)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab \\

  \\  \sf \longrightarrow \:  {(a + b)}^{3}  =  {a}^{3} +  {b}^{3} + 3ab(a + b) \\

\sf\large\underline\blue{Solution:-}

Given that,

  \\  \sf  ↦ {x}^{4} +  \dfrac{1}{ {x}^{4} } = 2207   \\

Now,

  \\  \sf  ↦ {x}^{4} +  \dfrac{1}{ {x}^{4} } = 2207   \\

  \\  \sf↦\left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}  - 2( {x}^{2}) \left( \dfrac{1}{ {x}^{2} }  \right) = 2207   \\

 ↦ \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}  - 2= 2207   \\

  ↦ \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}= 2207  + 2  \\

 ↦ \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}= 2209  \\

 ↦  {x}^{2} +  \dfrac{1}{ {x}^{2} } =  \sqrt{2209}  \\

  ↦ {x}^{2} +  \dfrac{1}{ {x}^{2} } = \pm  \sqrt{2209}  \\

 ↦  {x}^{2} +  \dfrac{1}{ {x}^{2} } = \pm 47 \\

Here, we need to ignore negative (-ve) value.

Therefore,

  ↦ {x}^{2} +  \dfrac{1}{ {x}^{2} } =  47 \\

_____________________________________________________

Again,

  ↦ {x}^{2} +  \dfrac{1}{ {x}^{2} } =  47 \\

 ↦\left({x} +  \dfrac{1}{ {x} } \right)^{2} - 2(x) \left( \dfrac{1}{x} \right) =  47 \\

  ↦ \left({x} +  \dfrac{1}{ {x} } \right)^{2} - 2 =  47 \\

 ↦ \left({x} +  \dfrac{1}{ {x} } \right)^{2}  =  47 + 2 \\

 ↦\left({x} +  \dfrac{1}{ {x} } \right)^{2}  =  49 \\

  ↦ {x} +  \dfrac{1}{ {x} }  = \pm  \sqrt{49} \\

  ↦ {x} +  \dfrac{1}{ {x} }  =  \pm 7 \\

_____________________________________________________

Now take positive sign__

 ↦  \left( {x} +  \dfrac{1}{ {x} }  \right)^{3}  =( 7)^{3}  \\

 ↦ {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 3(x) \left( \frac{1}{x} \right) \left(x +  \dfrac{1}{x} \right)   =(7)^{3}  \\

↦{x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 3(7) =(7)^{3}  \\

↦ {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 21 =343  \\

 ↦ {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3} =343  - 21 \\

  ↦ {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3} =322  \\

  \\  \sf \: { \huge{↦}} \:  \:  {x}^{3} +  \dfrac{1}{ {x}^{3} } = 322   \\

\small{\underline{\sf{\blue{Hence-}}}}

  \\  \sf \: { \huge{↣}} \:  \:  {x}^{3} +  \dfrac{1}{ {x}^{3} } = 322   \\

Answered by physicsloverhere
5

Your answer

  \\  \sf \: { \huge{↣}} \:  \:  {x}^{3} +  \dfrac{1}{ {x}^{3} } = 322   \\

Similar questions