Math, asked by bittu6200, 1 year ago

If x^4+1/x^4=47 find the value of x^3+1/x^3​

Answers

Answered by sivaprasath
18

Answer:

18

Step-by-step explanation:

Given :

To find the value of :

x^3+\frac{1}{x^3} if,

x^4+\frac{1}{x^4}=47

Solution :

x^4+\frac{1}{x^4}=47

By adding 2 both the sides,

x^4+\frac{1}{x^4} + 2=47 + 2

x^4+\frac{1}{x^4} + 2(\frac{x^2}{x^2})=49

(x^2)^2+(\frac{1}{x^2})^2 + 2(x^2)(\frac{1}{x^2})=7 \times 7

It is of the form,

(a + b)² = a² + 2ab + b²

Here, a=x^2 , b=\frac{1}{x^2}

So, We get,

(x^2 + \frac{1}{x^2})^2 =7^2

By taking root both the sides,

We get,

x^2 + \frac{1}{x^2} =7 ...(i)

By adding 2 both the sides,

x^2+\frac{1}{x^2} + 2=7 + 2

x^2+\frac{1}{x^2} + 2(\frac{x}{x})=9

(x)^2+(\frac{1}{x})^2 + 2(x)(\frac{1}{x})=3 \times 3

It is of the form,

(a + b)² = a² + 2ab + b²

Here, a=x , b=\frac{1}{x}

So, We get,

(x + \frac{1}{x})^2 =3^2

By taking root both the sides,

We get,

x + \frac{1}{x} =3 ...(ii)

We know that,

a^3+b^3 = (a+b)(a^2-ab+b^2)

By substituting,

a=x , b=\frac{1}{x},

We get,

x^3+\frac{1}{x^3}=(x+\frac{1}{x})[x^2 - (x)(\frac{1}{x})+\frac{1}{x^2}]

x^3+\frac{1}{x^3}=(x+\frac{1}{x})[x^2 - 1 +\frac{1}{x^2}]

x^3+\frac{1}{x^3}=(x+\frac{1}{x})[x^2 +\frac{1}{x^2} - 1]

x^3+\frac{1}{x^3}=(3)[7 - 1] = 3 \times 6 = 18

Similar questions