Math, asked by ssumrfnowcatc, 1 year ago

if x 4 + 1/x 4 = 47, then find the value of x 3 + 1/x 3

Answers

Answered by ARoy
320
x⁴+1/x⁴=47
or, x⁴+1/x⁴+2-2=47
or, {(x²)²+2.x².1/x²+(1/x²)²}=47+2
or, (x²+1/x²)²=49
or, (x²+1/x²)²=7²
or, x²+1/x²=7 [neglecting the negative sign]
or, x²+1/x²+2-2=7
or, x²+2.x².1/x²+1/x²=7+2
or, (x+1/x)²=9
or, (x+1/x)²=3²
or, x+1/x=3 [negnecting the negative sign]
∴, x³+1/x³
=(x+1/x)³-3.x.1/x(x+1/x)
=(3)³-3(3)
=27-9
=18 Ans.
Answered by mindfulmaisel
177

"x ^ { 3 } + \frac { 1 } { x ^ { 3 } }= 18

Given:

x ^ { 4 } + \left( \frac { 1 } { x ^ { 4 } } \right) = 47

To find:

x ^ { 3 } + \frac { 1 } { x ^ { 3 } }

Solution:

x ^ { 4 } + \left( \frac { 1 } { x ^ { 4 } } \right) = 47

Adding and subtracting 2 on LHS,

x ^ { 4 } + \left( \frac { 1 } { x ^ { 4 } } \right) + 2 - 2 = 47

\left[ \left( x ^ { 2 } \right) ^ { 2 } + \left( \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } + 2 \times \left( \frac { 1 } { x ^ { 2 } } \right) x ^ { 2 } \right] = 47 + 2

\left( x ^ { 2 } + \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } = 49

\left( x ^ { 2 } + \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } = 7 ^ { 2 }

x ^ { 2 } + \frac { 1 } { x ^ { 2 } } = 7 [neglecting the negative sign]

x ^ { 2 } + \frac { 1 } { x ^ { 2 } } + 2 - 2 = 7

x ^ { 2 } + 2 \left( x ^ { 2 } \right) \frac { 1 } { x ^ { 2 } } + \frac { 1 } { x ^ { 2 } } = 7 + 2

\left( x + \frac { 1 } { x } \right) ^ { 2 } = 9

\left( x + \frac { 1 } { x } \right) ^ { 2 } = 3 ^ { 2 }

x + \frac { 1 } { x } = 3 [neglecting the negative sign]

x ^ { 3 } + \frac { 1 } { x ^ { 3 } } = \left( x + \frac { 1 } { x } \right) ^ { 3 } - 3 ( x ) \frac { 1 } { x } \left( x + \frac { 1 } { x } \right)

= ( 3 ) ^ { 3 } - 3 ( 3 )

= 27-9= 18

x ^ { 3 } + \frac { 1 } { x ^ { 3 } }= 18"

Similar questions