Math, asked by eshaaggarwal38941, 8 months ago

If x^4+1/x^4=623 then find the value off+1/x

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow x^4+\dfrac{1}{x^4}=623

Add 2 to both sides.

\longrightarrow x^4+\dfrac{1}{x^4}+2=623+2

\longrightarrow (x^2)^2+\left(\dfrac{1}{x^2}\right)^2+2\times x^2\times\dfrac{1}{x^2}=625

\longrightarrow \left(x^2+\dfrac{1}{x^2}\right)^2=25^2

Let,

\longrightarrow x^2+\dfrac{1}{x^2}=25

Adding 2 to both,

\longrightarrow x^2+\dfrac{1}{x^2}+2=25+2

\longrightarrow x^2+\left(\dfrac{1}{x}\right)^2+2\times x\times\dfrac{1}{x}=27

\longrightarrow \left(x+\dfrac{1}{x}\right)^2=(3\sqrt3)^2

\longrightarrow\underline{\underline{x+\dfrac{1}{x}=\pm3\sqrt3}}

Let,

\longrightarrow x^2+\dfrac{1}{x^2}=-25

Adding 2 to both,

\longrightarrow x^2+\dfrac{1}{x^2}+2=-25+2

\longrightarrow x^2+\left(\dfrac{1}{x}\right)^2+2\times x\times\dfrac{1}{x}=-23

\longrightarrow \left(x+\dfrac{1}{x}\right)^2=-23

\longrightarrow\underline{\underline{x+\dfrac{1}{x}=\pm i\sqrt{23}}}

Similar questions