Math, asked by austro22406, 1 year ago

if x=(4+√15)^1/3+(4-√15)^1/3 then show that x^3-3x-8=0​

Attachments:

Answers

Answered by sowmyacomputers
10

Step-by-step explanation:

here is ur answer

Hope it is useful to u guys

Attachments:
Answered by Qwdelhi
5

x^3-3x-8=0

Given:

x=(4+√15)^1/3+(4-√15)^1/3

To Show:

x^3-3x-8=0

Solution:​

x = (4+\sqrt{15} )^{\frac{1}{3} } + (4-\sqrt{15} )^{\frac{1}{3} }

Cubing on both sides

x^{3} = [(4+\sqrt{15} )^{\frac{1}{3} } + (4-\sqrt{15} )^{\frac{1}{3} }]^{3}

∵ Formula (A+B)³ = A³ +B³+3AB(A+B)

Here A= (4+\sqrt{15} )^{\frac{1}{3} and B = (4-\sqrt{15} )^{\frac{1}{3}

x^{3} = [(4+\sqrt{15} )^{\frac{1}{3} }]^{3}  + [(4-\sqrt{15} )^{\frac{1}{3} }]^{3} + 3*(4+\sqrt{15} )^{\frac{1}{3} } * (4-\sqrt{15} )^{\frac{1}{3} }*[ (4+\sqrt{15} )^{\frac{1}{3} } + (4-\sqrt{15} )^{\frac{1}{3} }]

∵ A^m+ B^m = (A+B)^m

x^{3} = 4+\sqrt{15} + 4-\sqrt{15} ) + 3*[(4+\sqrt{15} ) (4-\sqrt{15}} ]^{\frac{1}{3}} * [(4+\sqrt{15} )^{\frac{1}{3}}+ (4-\sqrt{15} )^{\frac{1}{3}}]

∵ (A+B)(A-B) =A²-B²

x^{3} = 8 + 3* (16-15)^{\frac{1}{3} }  * x -------( Given)

x^{3}= 8+3*1*x\\\\x^{3}= 8 +3x\\\\x^{3}-8 -3x=0\\\\

Thus Showed.

#SPJ3

Similar questions