Math, asked by fardeenanwar700, 5 months ago

if x = 4-√15, find the value of x +1/x​

Answers

Answered by EliteSoul
17

Question :

If x = 4 - √15, find the value of x + 1/x​

Given :

x + 1/x = 4 - √15

To find :

Value of x + 1/x

Solution :

As we have, x = 4 - √15

\therefore\sf \dfrac{1}{x} = \dfrac{1}{4 - \sqrt{15}} \\\\ \\ {\ \ \ \ \ }\rm{\star \ Rationalising \ the \ denominator : }  \\\\ \\ : \implies\sf \dfrac{1}{x} = \dfrac{1(4 + \sqrt{15})}{(4 - \sqrt{15})(4 + \sqrt{15})} \\\\ \\ : \implies\sf \dfrac{1}{x} = \dfrac{4 + \sqrt{15}}{4^2 - (\sqrt{15})^2} \\\\ \\ : \implies\sf \dfrac{1}{x} = \dfrac{4 + \sqrt{15}}{16 - 15} \\\\ \\ : \implies\sf \dfrac{1}{x} = \dfrac{4 + \sqrt{15}}{1} \\\\ \\ : \implies\underline{\boxed{\sf{\dfrac{1}{x} = 4 + \sqrt{15} }}}

Now value of x + 1/x :

: \implies\sf x + \dfrac{1}{x} = 4 - \sqrt{15} + 4 + \sqrt{15} \\\\ \\ : \implies\underline{\boxed{\bold{x + \dfrac{1}{x} = 8 }}} \ \star

Therefore,

Required value of x + 1/x = 8


Glorious31: That's great !
Anonymous: Awesome!
MisterIncredible: Perfect
Uriyella: Great Answer !
ButterFliee: Nice!
EliteSoul: Thanks all of you! :D
spacelover123: Amazing :D
Answered by Anonymous
59

\underline{\underline{\bf{\maltese\:\:Question}}}

\sf{\bigstar\:\:\:If \:x\:=4-\sqrt{15}\:,\:Find\:\:the\:value\:\:of\:\:x\:+\:\dfrac{1}{x}}

\underline{\underline{\bf{\maltese\:\:Given}}}

\sf{\bullet\:\:\:x\:=4-\sqrt{15}}

\underline{\underline{\bf{\maltese\:\:To\:Find}}}

\sf{\bullet\:\:\:x+\dfrac{1}{x}}

\underline{\underline{\bf{\maltese\:\:Answer}}}

\sf{\bullet\:\:\:x\:+\:\dfrac{1}{x}=8}

\underline{\underline{\bf{\maltese\:\:Calculations}}}

\sf{Substitute\:\:the\:\:value\:\:of\:\:x\:\:(i,e.\:\:x\:=4-\sqrt{15})\:\: in \:\:x\:+\:\dfrac{1}{x}}

\sf{Then\:\:equation\:\:becomes}

\sf{x\:+\:\dfrac{1}{x}\:=\:4-\sqrt{15}+\dfrac{1}{4-\sqrt{15}}}

\bf{\:4-\sqrt{15}+\dfrac{1}{4-\sqrt{15}}}

\underline{\underline{\textsf{Multiply by the conjugate}\:\: \sf{\dfrac{4+\sqrt{15}}{4+\sqrt{15}}}}}

\sf{=4-\sqrt{15}+\dfrac{1\cdot \left(4+\sqrt{15}\right)}{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}}

\sf{=4-\sqrt{15}+\dfrac{ \left(4+\sqrt{15}\right)}{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}}

\sf{=4-\sqrt{15}+\dfrac{ \left(4+\sqrt{15}\right)}{4^2-\left(\sqrt{15}\right)^2}}

\sf{=4-\sqrt{15}+\dfrac{ \left(4+\sqrt{15}\right)}{16-15}}

\sf{=4-\sqrt{15}+\dfrac{ \left(4+\sqrt{15}\right)}{1}}

\sf{=4-\sqrt{15}+ \left(4+\sqrt{15}\right)}

\sf{=4-\sqrt{15}+ 4+\sqrt{15}\right}

\sf{=4+4}

\underline{\underline{\bf{=8}}}


Glorious31: Good work !
Anonymous: Great!
MisterIncredible: Perfect
Uriyella: Great.
ButterFliee: Nice!
spacelover123: Good :)
amitkumar44481: Great :-)
Similar questions