Math, asked by nishachauhan1576, 10 months ago

if x = 4 + √ 15 find the value of x ² + 1/ x²​

Attachments:

Answers

Answered by Anonymous
1

Given:

★ x = 4+√15.

To Find:

\sf{\dfrac{1}{x^{2}}+x^{2}}

Answer:

We have,

\sf{\implies x =4+\sqrt{15}}

\sf{\implies \dfrac{1}{x}=\dfrac{1}{4}+\sqrt{15}}

\sf{\implies \dfrac{1}{x}=\dfrac{4-\sqrt{15}}{(4+\sqrt{15})(4-\sqrt{15})}}

\sf{\implies  \dfrac{1}{x}=\dfrac{4-\sqrt{15}}{16-15}}

using

  • (a+b)(a-b) = -b²

\sf{\red{\leadsto\dfrac{1}{x}=4-\sqrt{15}}}

\rule{200}1

So,

=(4+√15)²=16+15+8√15 = 31+8√15

1/= (4-√15)²=16+15-8√15 =31-8√15.

using

  • (a+b)²=++2ab
  • (a-b)²=+-2ab.

\rule{200}1

.°. +1/

=31+8√1531-8√15

=62.

Similar questions