Math, asked by krishnaasharma, 1 year ago

if x = 4 - √15 find the value of x³ + 1/x³​

Answers

Answered by Anonymous
16

\rm \huge\color{PALEVIOLETRED} Solution

 \sf{x = 4 -  \sqrt{15} }

 \sf{ \frac{1}{x}  =   \frac{1}{ 4 -  \sqrt{15} }}

rationalise the denominator

 \sf{ \frac{1}{x}  =   \frac{1}{ 4 -  \sqrt{15} } \times  \frac{4 +  \sqrt{15} }{4 +  \sqrt{15} } }

 \sf{ \frac{1}{x}  =   \frac{4 +  \sqrt{15} }{  {4}^{2}  -  {(\sqrt{15}  )}^{2} }}

 \sf{ \frac{1}{x}  =   \frac{4 +  \sqrt{15} }{ 16 -  15 }}

 \sf{ \frac{1}{x}  =   4 +  \sqrt{15} }

now,

  \sf{ x + \frac{1}{x}  =   4  -  \sqrt{15}  + 4 +  \sqrt{15} }

  \sf{ x + \frac{1}{x}  =8}

cubing on both sides.

  \sf{ {(x + \frac{1}{x} )}^{3} ={8}^{3}}

  \sf{{ {x}^{3}  + \frac{1}{{x}^{3}  }  + 3(8 )= 512 }}

 \sf{{ {x}^{3}  + \frac{1}{{x}^{3}  }  = 512 - 24 }}

 \fbox{ \sf{{ {x}^{3}  + \frac{1}{{x}^{3}  }  = 488 }}}


dynamo979422: I think u have not got good percentage
dynamo979422: oh
dynamo979422: I 8 i got 92.8
dynamo979422: haa
dynamo979422: yaa
dynamo979422: ji
Similar questions