Math, asked by amitachaturvedi629, 1 year ago

If x = 4+√15 , find value of x^3 - 1/ x^3​

Answers

Answered by rishu6845
4

Answer:

126√15

Step-by-step explanation:

ATQ , x = 4 + √15

1 / x = 1 / ( 4 + √15 )

Multiplying by ( 4 - √15 ) in numerator and denominator we get

= ( 4 - √15 ) / ( 4 + √ 15 ) ( 4 - √15 )

We have an identity as follows

a² - b² = ( a + b ) (a - b ) , applying it we get

= ( 4 - √15 ) / { ( 4 )² - ( √15 )² }

= ( 4 - √15 ) / ( 16 - 15 )

= ( 4 - √15 ) / 1

= ( 4 - √15 )

Now we find , value of

x - ( 1 / x ) = (4 + √15 ) - ( 4 - √15 )

= ( 4 + √15 - 4 + √15 )

= 2 √15

Now squaring both sides we get

( x - 1 / x )² = ( 2 √15 )²

We know that

( a - b )² = a² + b² - 2ab , applying this we get

=> (x)² + (1 / x)² - 2 ( x ) (1 / x ) = 4 × 15

=> x² + 1 / x² - 2 = 60

=> x² + 1 / x² = 60 +2

=> x² + 1 / x² = 62

Now returning to original problem

x³ - 1/x³ = ( x )³ - ( 1 / x )³

We have an identity

a³ - b³ = ( a - b ) (a² + b² + ab ) , using it we get

x³ - 1 / x³

= ( x - 1/x ) { x² + (1 / x²) + x (1 / x ) }

= ( 2 √15 ) { (x² + 1 / x² ) + 1 }

= ( 2√15 ) ( 62 + 1 )

= ( 2√15 ) ( 63 )

x³ - (1/x³ )= 126 √15

Answered by Aɾꜱɦ
15

<font color =“orange”>

{ \huge \bf{ \mid{ \overline{ \underline{Answer}}} \mid}}<body bgcolor= “purple” ><fontcolor=“white”>

126√15

#answerwithquality #bal

Similar questions