Math, asked by Kousal56, 5 months ago

If x = 4-√15 then find
\sf x + \dfrac{1}{x} =?

Answers

Answered by Anonymous
29

To find :

• Value of \sf x + \dfrac{1}{x} =?

Solution :-

Given ,

x = 4 - √15

\therefore\sf \dfrac{1}{x} = \dfrac{1}{4 - \sqrt{15}}\\\\

\dag\;{\underline{\frak{Rationalising\;the\;denominator}}}\\ \\

 : \implies\sf \dfrac{1}{x} = \dfrac{1(4 + \sqrt{15})}{(4 - \sqrt{15})(4 + \sqrt{15})} \\\\

: \implies\sf \dfrac{1}{x} = \dfrac{4 + \sqrt{15}}{4^2 - (\sqrt{15})^2}\\\\

 : \implies\sf \dfrac{1}{x} = \dfrac{4 + \sqrt{15}}{16 - 15} \\\\

 : \implies\sf \dfrac{1}{x} = \dfrac{4 + \sqrt{15}}{1} \\\\

 : \implies\underline{\boxed{\sf{\dfrac{1}{x} = 4 + \sqrt{15} }}}\\\\

_____

Now,

: \implies\sf x + \dfrac{1}{x} = 4 - \sqrt{15} + 4 + \sqrt{15}\\\\

 : \implies\underline{\boxed{\bold{x + \dfrac{1}{x} = 8 }}} \\\\\

\boxed {\sf {\purple {Required \ value \ is\ 8.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions