Math, asked by gamerakansh7, 1 day ago

if x = 4+ √15 then the value of x^3 + 1/x^3 is

Answers

Answered by dayanidhisharma19
0

Answer:

488

Step-by-step explanation:

Given x = 4+ √15

So, 1/x = 1/4+ √15

           = 4 - √15/ (4 - √15)(/4+ √15)

           = 4 - √15/(16 - 15)

           = 4 - √15

We know that (a + b)^{3} + (a - b)^{3} = 2(a^{3}+3ab^2)

So, x^{3} + 1/x^{3}

= (4+\sqrt{15} )^3 + (4-\sqrt{15} )^3 = 2(4^3 + 3*4*\sqrt{15}^2)

= 2(64+180)

= 128 + 360

= 488

Answered by gausia8080
0

Given,

x=4+\sqrt{15}

We have to find the value of x^{3}+\frac{1}{x^3}

First we have to find the value of \frac{1}{x}

x= 4+\sqrt{15}

\frac{1}{x}=\frac{1}{4+\sqrt{15} }

Multiply and divided by 4-\sqrt{15} with numerator and denominator

= \frac{1}{4+\sqrt{15} }\times\frac{4-\sqrt{15} }{4-\sqrt{15} }

= \frac{4+\sqrt{15} }{16-15}

\frac{1}{x} = {4-\sqrt{15} }

Now, substitute x and \frac{1}{x} values  x^{3}+\frac{1}{x^3}

=(4+\sqrt{15} )^{3}+(4-\sqrt{15})^{3}

We know that,

(a+b)^{3}+(a-b)^{3}= 2(a^{3}+3ab^{2} )

(4+\sqrt{15} )^{3} +(4-\sqrt{15} )^{3}= 2(4^{3}+3\times4\times(\sqrt{15} )^{2}  )

= 2(64+180)

= 2(224)

= 488

Therefor, the answer is 488.

Similar questions