Math, asked by kartickshaw92, 12 days ago

If x=4+2√3 find √x+1/√x​

Answers

Answered by sparshkumarsharma
1

Answer:

x = 7+4√3

To find √x we proceed,

√x = √(7+4√3)

√x = √(7+2x2√3)

√x = √(7+2√3x4)

√x = √(3+4+2√3x4)….. {writing 7 = 3+4}

If we observe RHS of √x we observe form of

√(a² + b² +2ab) where a=√3 and b =√4

Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3

√x = 2+√3

1/√x = 1/(2+√3)

Multiplying both numerator and denominator by 2 - √3, we get

1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =

1/√x = 2-√3

Hence √x +1/√x = 2+√3 +2 -√3 = 4

Answered by Kokkiearmy
5

\huge\pink{Answer}

Given :

x + = 2 +  \sqrt{3}

To find : find the value of

x +  \frac{1}{x}

Since x =

2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 \frac{1}{x}  = \frac{2 -  \sqrt{3} }{ {2}^{2} -  \sqrt{ {3}^{2} }  }

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \frac{1}{x}  = 2 -  \sqrt{3}

Substitute the values

x +  \frac{1}{x}

2 +  \sqrt{3}  + 2 -  \sqrt{3}

 = 4

Hence , the value of x + 1/x is 4 .

\huge\pink{hope \ \: it \: will \: help \: you}

Similar questions