Math, asked by akr2729, 1 year ago

If x = 4/(√5+1) (4√5 +1) (8√5 +1 ) (16√5 +1). Then the value of (1+x)^48 is. It is 4th root of 5 and 8th root of 5....

Answers

Answered by Bit145
22

Answer:

125

Step-by-step explanation:

x=\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}

\implies x=\frac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)(\sqrt[16]{5}-1)}

\implies x=\frac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[8]{5}-1)}

\implies x=\frac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[4]{5}-1)}

\implies x=\frac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}

\implies x=\frac{4(\sqrt[16]{5}-1)}{5-1}

\implies x=(\sqrt[16]{5}-1)

\implies x+1=\sqrt[16]{5}

\therefore (x+1)^{48}=5^{\frac{48}{16}}=5^3=125

Similar questions