Math, asked by nitugmittal12, 1 year ago

If x = 4 - √5 and y = 4+ √5 then find :
x^4y^2 + x^2y^2

Answers

Answered by Anonymous
0

_____________________________________________

\huge\underline \mathfrak \green{Solution:-}

Given, x = 4 -  \sqrt{5} and y = 4 +  \sqrt{5}

Now,

\red\longrightarrow\tt x + y

\red\longrightarrow\tt  4 -  \sqrt{5}  + 4 +  \sqrt{5}

 \red\longrightarrow\tt 8

Again,

\blue\longrightarrow\tt  xy

 \blue\longrightarrow\tt  (4 -  \sqrt{5} )(4  +  \sqrt{5} )

\blue\longrightarrow\tt  {4}^{2}  -  { (\sqrt{5} )}^{2}

\blue\longrightarrow\tt 16 - 5

\blue\longrightarrow\tt 11

Now,

\pink\longrightarrow\tt {x}^{4}  +  {y}^{4}  +  {x}^{2}  {y}^{2}

\pink\longrightarrow\tt { {(x}^{2}) }^{2}  +  { {(y}^{2}) }^{2}  + 2 {x}^{2}  {y}^{2}  -  {x}^{2}  {y}^{2}

\pink\longrightarrow\tt  {( {x}^{2} +  {y}^{2}  )}^{2}  -  {(xy})^{2}

\pink\longrightarrow\tt [{ {( x + y)}^{2}   - 2xy}]^{2}  -  {(xy)}^{2}

\pink\longrightarrow\tt {( {8}^{2}  - 2 \times 11)}^{2}  -  {11}^{2}

\pink\longrightarrow\tt  {(64 - 22)}^{2}  - 121

 \pink\longrightarrow\tt  {(32)}^{2}  - 121

\pink\longrightarrow\tt 1024 - 121

 \pink\longrightarrow\tt  903

I HOPE YOU WILL MARK ME AS BRAINLIEST

_____________________________________________

Similar questions