Math, asked by akshaykumarme2015, 9 months ago

if x^4-79x^2+1=0 then find the value of x^3+1/x^3

Answers

Answered by MaheswariS
3

\textbf{Given equation is}

x^4-79x^2+1=0

\text{This can be written as}

x^4+1=79x^2

\implies\bf\displaystyle\,x^2+\frac{1}{x^2}=79

\text{We know that,}

\boxed{\bf\,(a+b)^2=a^2+b^2+2ab}

\implies\displaystyle(x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2x(\frac{1}{x})

\implies\displaystyle(x+\frac{1}{x})^2=79+2

\implies\displaystyle(x+\frac{1}{x})^2=81

\implies\bf\displaystyle\,x+\frac{1}{x}=9

\text{We know that,}

\boxed{\bf\,a^3+b^3=(a+b)^3-3ab(a+b)}

\implies\displaystyle\,x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x)(\frac{1}{x})(x+\frac{1}{x})

\implies\displaystyle\,x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})

\implies\displaystyle\,x^3+\frac{1}{x^3}=(9)^3-3(9)

\implies\displaystyle\,x^3+\frac{1}{x^3}=729-27

\implies\boxed{\bf\,x^3+\frac{1}{x^3}=702}

\therefore\textbf{The value of $\bf\,x^3+\frac{1}{x^3}$ is 702}

Similar questions