Math, asked by palashsoni666, 10 months ago

If x=4/8+√60 then 1/2[√x+2/√x]=

Answers

Answered by dheerajk1912
1

\mathbf{If \ x=\frac{4}{8+\sqrt{60}}, then \ \frac{1}{2}\left ( \sqrt{x}+\frac{2}{\sqrt{x}} \right )=\sqrt{5}}

Step-by-step explanation:

  •        Given that

       \mathbf{x=\frac{4}{8+\sqrt{60}}}

  •      Rationalise the denominator

       \mathbf{x=\frac{4}{(8+\sqrt{60})}\times \frac{(8-\sqrt{60})}{(8-\sqrt{60})}}

     

      So

      \mathbf{x=4\times \frac{(8-\sqrt{60})}{4}=8-\sqrt{60}}

  •      Which can be written as

     \mathbf{x=8-\sqrt{60}=5+3-2\sqrt{15}}

     \mathbf{x=8-\sqrt{60}=(\sqrt{5})^{2}+(\sqrt{3})^{2}-2\sqrt{5}\times\sqrt{3}}

    therefore

     \mathbf{x=(\sqrt{5}-\sqrt{3})^{2}}

     So

     \mathbf{\sqrt{x}=\sqrt{5}-\sqrt{3}}                         ...1)

     Then

     \mathbf{\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{5}-\sqrt{3}}}

  •      Again rationalise the denominator

     \mathbf{\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}}

     \mathbf{\frac{1}{\sqrt{x}}=\frac{\sqrt{5}+\sqrt{3}}{5-3}=\frac{\sqrt{5}+\sqrt{3}}{2}}             ...2)

    Now from

    \mathbf{\frac{1}{2}\left ( \sqrt{x}+2\times \frac{1}{\sqrt{x}} \right )}

    \mathbf{\frac{1}{2}\left ( \sqrt{5}-\sqrt{3}+2\times \frac{\sqrt{5}+\sqrt{3}}{2} \right )}

    \mathbf{\frac{1}{2}\left ( \sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3} \right )}

   

    \mathbf{\frac{1}{2}\left ( 2\sqrt{5} \right )}

    =\mathbf{\sqrt{5}}

Similar questions