Math, asked by rimfg432, 9 months ago

If x=4+root 15,find the value of xcube -1upon xcube

Answers

Answered by CharmingPrince
16

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

If \ x = 4 + \sqrt15 ,\ find\ the \ value \ of\\ x^3 - \displaystyle\frac{1}{x^3}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

─────────────────────

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Given:}}}

\red{\implies x = 4 +\sqrt15}

\red{\implies} \displaystyle\frac{1}{x} = \frac{1}{4+ \sqrt15 }

\boxed{\red{\bold{Rationalizing:}}}

\purple{\implies x = \displaystyle\frac{1}{4+ \sqrt15 } × \frac{4- \sqrt15 }{4- \sqrt15}}

\purple{\implies} \displaystyle \frac {4- \sqrt15 }{4^2 - \sqrt15^2}

\purple{\implies} \displaystyle \frac{4- \sqrt15 }{16-15}

\purple{\implies}4 - \sqrt15

\boxed{\red{\bold{Now :}}}

\green{\implies} x^3 - \displaystyle\frac{1}{x^3} = \left( x - \frac{1}{x} \right)^3 + 3 \left( x - \frac{1}{x} \right)

\boxed{\red{\bold{Putting \ the \ values:}}}

\green{\implies} x^3 - \displaystyle\frac{1}{x^3} = (4 + \sqrt15 - 4 + \sqrt15 )^3 -3(4 + \sqrt15 - 4 + \sqrt15 )

\green{\implies} x^3 - \displaystyle\frac{1}{x^3} = ({2\sqrt15})^3 - 3(2\sqrt15 )

\green{\implies} x^3 - \displaystyle\frac{1}{x^3} = 1800 \sqrt15 - 6\sqrt15

\green{\boxed{\implies{\boxed{x^3 - \displaystyle\frac{1}{x^3} = 1794\sqrt15}}}}

─────────────────────

Similar questions