Math, asked by shardapardeshi5940, 3 months ago

If ( x + 4), (x+12), (x - 1),(x + 15) a are in
Q22
proportion then find the value of x​

Answers

Answered by Anonymous
3

Given :

(x + 4), (x+12), (x - 1),(x + 15) are in proportion.

To Find :

The value of x.

Solution :

Analysis :

Here it is said that the variables are in proportion. So we have to solve it by using the proportion laws.

Explanation :

a : b :: c : d

where,

  • a = x + 4
  • b = x + 12
  • c = x - 1
  • d = x + 15

\\ :\implies\sf\dfrac{a}{b}=\dfrac{c}{d}

Substituting the values of a, b, c, d;

\\ :\implies\sf\dfrac{x+4}{x+12}=\dfrac{x-1}{x+15}

By cross multiplying,

\\ :\implies\sf(x+4)(x+15)=(x+12)(x-1)

Expanding the brackets,

\\ :\implies\sf x^2+15x+4x+60=x^2-x+12x-12

Cancelling x² from both the sides,

\\ :\implies\sf \cancel{x^2}\ +15x+4x+60=\cancel{x^2}\ -x+12x-12

After evaluation,

\\ :\implies\sf15x+4x+60=-x+12x-12

\\ :\implies\sf19x+60=11x-12

Transposing 11x to LHS and 60 to RHS,

\\ :\implies\sf19x-11x=-12-60

After evaluation,

\\ :\implies\sf8x=-72

\\ :\implies\sf x=\dfrac{-72}{\ \ 8}

\\ :\implies\sf x=\cancel{\dfrac{-72}{\ \ 8}}

\\ :\implies\sf x=-9

\\ \therefore\boxed{\bf x=-9.}

The value of x is -9.

Verification :

LHS :

\\ :\implies\sf\dfrac{x+4}{x+12}

  • Putting x = -9,

\\ :\implies\sf\dfrac{(-9)+4}{(-9)+12}

\\ :\implies\sf\dfrac{-9+4}{-9+12}

\\ \therefore\bf\dfrac{-5}{3}

RHS :

\\ :\implies\sf\dfrac{x-1}{x+15}

  • Putting x = -9,

\\ :\implies\sf\dfrac{(-9)-1}{(-9)+15}

\\ :\implies\sf\dfrac{-9-1}{-9+15}

\\ :\implies\sf\dfrac{-10}{6}

\\ :\implies\sf\dfrac{\cancel{-10}\ \ ^{-5}}{\not{6}\ \ ^3}

\\ \therefore\bf\dfrac{-5}{3}

LHS = RHS.

  • Hence verified.
Similar questions