Math, asked by tanayjoshitj12, 1 day ago

If x^(4)+x^(2)=(11)/(5) then find value of root(3)((x+1)/(x-1))+root(3)((x-1)/(x+1))

Answers

Answered by thanushr0000
3

Answer:

f the equations x^ 2 -px=0\&x^ 2 +px-p=0 have a common root, then the reciprocal of sum of all possible value(s) of p is ​

Step-by-step explanation:

If x^(4)+x^(2)=(11)/(5) then find value of root(3)((x+1)/(x-1))+root(3)((x-1)/(x+1))

Answered by hotelcalifornia
0

Given:

x^{4} + x^{2} = \frac{11}{5}

To find:

The value of  \sqrt{3}\frac{x+1}{x-1}+\sqrt{3}\frac{x-1}{x+1}

Solution:

We have,

x^{4} + x^{2} = \frac{11}{5}

If we add \frac{1}{4} both sides, we get

x^{4} + x^{2} +\frac{1}{4}= \frac{11}{5}+\frac{1}{4}

Using the identity , (a+b)^{2} = a^{2} + 2ab+b^{2} , we get

(x^{2} + \frac{1}{2} )^{2} =\frac{49}{20} ; or\\x^{2} + \frac{1}{2}= \frac{7}{2\sqrt{5} }  ; or\\x^{2} = \frac{7}{2\sqrt{5} } - \frac{1}{2}

Hence,

x^{2} = \frac{7-\sqrt{5} }{2\sqrt{5} }    (i)

Now,

We have ,

=\sqrt{3}\frac{x+1}{x-1}+\sqrt{3}\frac{x-1}{x+1}

Solving this we get,

=\sqrt{3}(\frac{x+1}{x-1}+\frac{x-1}{x+1}  ) \\=\sqrt{3}(\frac{(x+1)^{2}+(x-1)^{2}}{(x-1)(x+1)}   )

Applying the identities, we get

=\sqrt{3}\frac{(x^{2} +2x+1+x^{2} -2x+1)}{x^{2} -1} ; or

=\sqrt{3}(\frac{2(x^{2} +1)}{x^{2} -1}  )\\

Applying the value of x^{2} calculated in (i) in the above equation, we get

=2\sqrt{3}(\frac{(\frac{7-\sqrt{5} }{2\sqrt{5} } )+1}{(\frac{7-\sqrt{5} }{2\sqrt{5} } )-1}  )  ; or

=2\sqrt{3}(\frac{7-\sqrt{5}+2\sqrt{5}  }{7-\sqrt{5}-2\sqrt{5}  } ) ; and hence,

=2\sqrt{3}(\frac{7+\sqrt{5} }{7-3\sqrt{5} } )

We can simplify it further,

= 2\sqrt{3}(\frac{7+\sqrt{5} }{7-3\sqrt{5} } \frac{(7+3\sqrt{5}) }{(7+3\sqrt{5}) } ) \\= 2\sqrt{3}\frac{(49+21\sqrt{5}+7\sqrt{5}+15  )}{(49-45)}  \\= 2\sqrt{3}(\frac{64+28\sqrt{5} }{4} ) \\=2\sqrt{3}(16+7\sqrt{5} ) \\= 32\sqrt{3}+ 14\sqrt{15}

Final answer:

Hence the value of \sqrt{3}\frac{(x+1)}{(x-1)} +\sqrt{3}\frac{(x-1)}{(x+1)} is 32\sqrt{3}+ 14\sqrt{15}.

Similar questions