Math, asked by hridayghelani9713, 10 months ago

If x=4t/1+t^2, y=3(1-t^2) /(1+t^2), then show that dy/dx=-9x/4y​

Answers

Answered by pulakmath007
4

SOLUTION

GIVEN

 \displaystyle \sf{x =  \frac{4t}{1 +  {t}^{2} }  \:   \: \: and \:  \:  \: y =  \frac{3(1 -  {t}^{2} )}{1 +  {t}^{2} } }

TO PROVE

 \displaystyle \sf{ \frac{dy}{dx}  =  -  \frac{9x}{4y}  }

EVALUATION

Here it is given that

 \displaystyle \sf{x =  \frac{4t}{1 +  {t}^{2} }  \:   \: \: and \:  \:  \: y =  \frac{3(1 -  {t}^{2} )}{1 +  {t}^{2} } }

Now Squaring both we get

 \displaystyle \sf{ {x}^{2}  =  \frac{16 {t}^{2} }{{(1 +  {t}^{2} )}^{2} }  \:    }

 \displaystyle \sf{ {y}^{2} =  \frac{9{(1 -  {t}^{2} )}^{2} }{{(1 +  {t}^{2})}^{2} } }

Now

 \sf{9 {x}^{2} + 4 {y}^{2}  }

 \displaystyle \sf{  =  \frac{144 {t}^{2} }{{(1 +  {t}^{2} )}^{2} }   +  \frac{36{(1 -  {t}^{2} )}^{2} }{{(1 +  {t}^{2})}^{2} }  \:    }

 \displaystyle \sf{  =   \frac{36 \bigg[{(1 -  {t}^{2} )}^{2} + 4 {t}^{2}  \bigg] }{{(1 +  {t}^{2})}^{2} }  \:    }

 \displaystyle \sf{  =   \frac{36 \bigg[{(1  +   {t}^{2} )}^{2}  \bigg] }{{(1 +  {t}^{2})}^{2} }  \:    }

 = 36

 \sf{ \therefore \:  \: 9 {x}^{2} + 4 {y}^{2}  = 36 }

Differentiating both sides with respect to x we get

 \displaystyle \sf{18x + 8y \frac{dy}{dx}  =  0 }

 \displaystyle \sf{  \implies \: \frac{dy}{dx}  =  -  \frac{18x}{8y}  }

 \displaystyle \sf{  \implies \: \frac{dy}{dx}  =  -  \frac{9x}{4y}  }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2]

https://brainly.in/question/18312318

Similar questions