Math, asked by dilipryanfbd, 1 year ago

if x=√5+1÷√5-1 and y=√5-1÷√5+1 find the value of x^2+ xy +y^2

Answers

Answered by MaheswariS
24

Answer:

\bf\;x^2+xy+y^2=8

Step-by-step explanation:

Given:

x=\frac{\sqrt{5}+1}{\sqrt{5}-1}

y=\frac{\sqrt{5}-1}{\sqrt{5}+1}

x+y=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}

x+y=\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}

x+y=\frac{5+1+2\sqrt{5}+5+1-2\sqrt{5}}{\sqrt{5}^2,-1^2}

x+y=\frac{12}{4}

\implies\bf\;x+y=3

Now

x^2+xy+y^2=(x^2+2xy+y^2)-xy

x^2+xy+y^2=(x+y)^2-xy

x^2+xy+y^2=3^2-(\frac{\sqrt{5}+1}{\sqrt{5}-1}{\times}\frac{\sqrt{5}-1}{\sqrt{5}+1})

x^2+xy+y^2=9-1

\implies\boxed{\bf\;x^2+xy+y^2=8}

Answered by bhanupratapsingh1605
7

answer is above plz mark as Brainliest

Attachments:
Similar questions