if x= (√5+1)/(√5-1)And y=(√5-1)/(√5+1),find the value of x2+xy+y2
Answers
Answer:
x
2
+xy+y
2
=8
Step-by-step explanation:
Given:
x=\frac{\sqrt{5}+1}{\sqrt{5}-1}x=
5
−1
5
+1
y=\frac{\sqrt{5}-1}{\sqrt{5}+1}y=
5
+1
5
−1
x+y=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}x+y=
5
−1
5
+1
+
5
+1
5
−1
x+y=\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}x+y=
(
5
−1)(
5
+1)
(
5
+1)
2
+(
5
−1)
2
x+y=\frac{5+1+2\sqrt{5}+5+1-2\sqrt{5}}{\sqrt{5}^2,-1^2}x+y=
5
2
,−1
2
5+1+2
5
+5+1−2
5
x+y=\frac{12}{4}x+y=
4
12
\implies\bf\;x+y=3⟹x+y=3
Now
x^2+xy+y^2=(x^2+2xy+y^2)-xyx
2
+xy+y
2
=(x
2
+2xy+y
2
)−xy
x^2+xy+y^2=(x+y)^2-xyx
2
+xy+y
2
=(x+y)
2
−xy
x^2+xy+y^2=3^2-(\frac{\sqrt{5}+1}{\sqrt{5}-1}{\times}\frac{\sqrt{5}-1}{\sqrt{5}+1})x
2
+xy+y
2
=3
2
−(
5
−1
5
+1
×
5
+1
5
−1
)
x^2+xy+y^2=9-1x
2
+xy+y
2
=9−1
\implies\boxed{\bf\;x^2+xy+y^2=8}⟹
x
2
+xy+y
2
=8