Math, asked by ankit434488, 11 months ago

if x=√5+1/√5-1 and y=√5-1/√5+1 then the value of x^2-xy+y^2/x^2-xy+y^2 =?​

Answers

Answered by HappiestWriter012
4

Given,

\boxed{x =  \dfrac{ \sqrt{5} + 1 }{  \sqrt{5} - 1}}  \:

Rationalising the denominator,

x =  \frac{ \sqrt{5} + 1 }{  \sqrt{5} - 1 }  \times  \frac{ \sqrt{5} + 1 }{ \sqrt{5} + 1 }  \\  \\  x =  \frac{ {( \sqrt{5}  + 1)  }^{2} }{( \sqrt{5}) ^{2} -  {1}^{2}   }  \\  \\ x =  \frac{5 + 1 + 2 \sqrt{5} }{4}  \\  \\ x =  \frac{6 + 2 \sqrt{5} }{4}  \\  \\ x =  \frac{3 +  \sqrt{5} }{2}

\boxed{y=  \dfrac{ \sqrt{5}  -  1 }{  \sqrt{5}  + 1 }} \:

Rationalising the denominator,

y=  \frac{ \sqrt{5}  -  1 }{  \sqrt{5}  +  1 }  \times  \frac{ \sqrt{5}  -  1 }{ \sqrt{5}  - 1 }  \\  \\  y =  \frac{ {( \sqrt{5}   -  1)  }^{2} }{( \sqrt{5}) ^{2} -  {1}^{2}   }  \\  \\ y =  \frac{5 + 1  -  2 \sqrt{5} }{4}  \\  \\ y=  \frac{6  -  2 \sqrt{5} }{4}  \\  \\ y=  \frac{3  -   \sqrt{5} }{2}

Now, The question seems to have some mistake as the Numerator and Denominator are same, it's equal to 1.

Correct question :

 \frac{ {x}^{2} - xy +  {y}^{2}  }{ {x}^{2} + xy  +  {y}^{2}  }

Solving the expression :

 \frac{ {x}^{2}  - 2xy +  {y}^{2}  + xy }{ {x}^{2}  + 2xy  +  {y}^{2}  - xy } \\  \\  =  \frac{(x - y) ^{2}  + xy}{(x + y) ^{2}  - xy}

Now,

x  -  y =  \frac{3 +  \sqrt{5} }{2}   -  \frac{3 -  \sqrt{5} }{2}  =  \sqrt{5}

x   +  y =  \frac{3 +  \sqrt{5} }{2}    + \frac{3 -  \sqrt{5} }{2}  =  3

x     y =  \frac{3 +  \sqrt{5} }{2}     \times \frac{3 -  \sqrt{5} }{2}  =   \frac{9 - 5}{2}  =  \frac{4}{2}  = 2

  \frac{ {x}^{2}  - xy +  {y}^{2} }{ {x}^{2} + xy +  {y}^{2}  } \\  \\  =  \frac{(x - y) ^{2}  + xy}{(x + y) ^{2}  - xy}   \\  \\  =  \frac{( \sqrt{5}) ^{2} + 2  }{ {( \sqrt{5}) }^{2}  - 2}  \\  \\  =  \frac{5 + 2}{5 - 2}  \\  \\  =  \frac{7}{3}

Therefore, The required answer is 7/3.

Similar questions