Math, asked by Slipknot6359, 1 year ago

If x=√5+√2÷√5-√2 and y=√5-√2÷√5+√2 find 3x^2+4xy-3y^2

Answers

Answered by DeeptiMohanty
19
here is your answer...
hope this helps you...
Attachments:
Answered by payalchatterje
0

Answer:

Required value is \frac{ - 56 \sqrt{10 }  + 12}{3}

Step-by-step explanation:

Given,

x =   \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }

and

y =  \frac{ \sqrt{5}  -  \sqrt{2} }{ \sqrt{5}  +  \sqrt{2} }

We want to find,

3 {x}^{2}  + 4xy - 3 {y}^{2}

3( {x}^{2}  -  {y}^{2} ) + 4xy

3(x + y)(x - y) + 4xy

Now,

  {x}^{2}  =  \frac{ { (\sqrt{5} -  \sqrt{2})  }^{2}  }{ { (\sqrt{5}  +  \sqrt{2} )}^{2} }  =  \frac{7 - 2 \sqrt{10} }{7 + 2 \sqrt{10} }

 {y}^{2}  =     \frac{ { (\sqrt{5}  +  \sqrt{2})  }^{2}  }{ { (\sqrt{5}   -  \sqrt{2} )}^{2} }  =  \frac{7  +  2 \sqrt{10} }{7  -  2 \sqrt{10} }

So,

 {x}^{2}  -  {y}^{2}  =  \frac{7  -  2 \sqrt{10} }{7 + 2 \sqrt{10} }  -  \frac{7   +  2 \sqrt{10} }{7  - 2 \sqrt{10} }  =  \frac{49 - 28 \sqrt{10}  + 40 - 49 - 28 \sqrt{10 }- 40}{49 - 40}  =  -  \frac{56 \sqrt{10} }{9}

And

xy =  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  -  \sqrt{2} }  \times   \frac{ \sqrt{5}   -   \sqrt{2} }{ \sqrt{5}   +   \sqrt{2} }  = 1

Now,

3( {x}^{2}  -  {y}^{2} ) + 4xy = 3(  - \frac{56 \sqrt{10} }{9} ) + 4 =  -  \frac{56 \sqrt{10} }{3}  + 4 =   \frac{ - 56 \sqrt{10 }  + 12}{3}

Similar questions