If x =√5-2/√5+2 and y =√5+2/√5-2, find the value of x2 +y2 - xy
Answers
Answered by
1
x=√5-√2/√5+√2 =(√5-√2)(√5-√2)/(√5+√2)(√5-√2) ={(√5)²-2.√5.√2+(√2)²}/{(√5)²-(√2)²} =(5-2√10+2)/(5-2) =(7-2√10)/3y=√5+√2/√5-√2 =(√5+√2)(√5+√2)/(√5-√2)(√5+√2) ={(√5)²+2.√5.√2+(√2)²}/{(√5)²-(√2)²} =(5+2√10+2)/(5-2) =(7+2√10)/3Now, x²+xy+y²=x²+y²+xy={(x+y)²-2xy}+xy=(x+y)²-xy={(7-2√10)/3+(7+2√10)/3}²-{(7-2√10)/3×(7+2√10)/3}={(7-2√10+7+2√10)/3}²-(7-2√10)/(7+2√10)=(14/3)²-{(7-2√10)(7-2√10)/(7+2√10)(7-2√10)}=196/9-(7-2√10)²/{(7)²-(2√10)²}=196/9-(49-2.7.2√10+40)/(49-40)=196/9-(9-28√10)/9=(196-9+28√10)/9
=(187+28√10)/9
=(187+28√10)/9
Answered by
1
the answer is
sorry for writing
mrk as brainliest
sorry for writing
mrk as brainliest
Attachments:
sumith4:
sorry sorry×1000
Similar questions