Math, asked by ApexBlaze, 9 months ago

if x=√5-2÷√5+2, find the value of: x^2+1/x^2​

Answers

Answered by papaiaci4
1

Answer:

The Answer is 18.

Step-by-step explanation:

if x=√5-2÷√5+2, find the value of: x^2+1/x^2

Follow The Picture

Please give me Brainly.....

Attachments:
Answered by Salmonpanna2022
4

Step-by-step explanation:

\mathrm{  \huge{\underline{Question : }}} \\

 \mathrm{If  \: x =   \frac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2}  ,find \: the \: value \: of :  {x}^{2}  +  \frac{1}{ {x}^{2} } }.\\

 \mathrm{ \underline {\huge{To  \: find \:  out:}}} \\

 \mathrm{The  \: value \:  of :  {x}^{2} +  \frac{1}{ {x}^{2} }  } =  \\

 \mathrm{ \huge \underline{Solution : }} \\

Let's solve the problem

we have,

 \mathrm{x =  \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } } \\

 \mathrm{∴ \:  \:  \: \frac{1}{x}  =  \frac{ \sqrt{5}  + 2}{ \sqrt{5} - 2 } } \\  \\

⟹ \mathrm{x +  \frac{1}{x} } =  \frac{ \sqrt{5}  - 2}{ \sqrt{5} + 2 }  +  \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2  }  \\

⟹ \mathrm{x +  \frac{1}{x} } =  \frac{( \sqrt{5}  - 2 {)}^{2} + ( \sqrt{5}  + 2 {)}^{2}  }{( \sqrt{5}  + 2)( \sqrt{5}  - 2)}  \\

⟹ \mathrm{x +  \frac{1}{x} } =  \frac{5 + 4 - 4 \sqrt{5}  + 5 + 4 + 4 \sqrt{5} }{5 - 4}  \\

⟹ \mathrm{x +  \frac{1}{x} } =  \frac{5 + 4 - 4 \sqrt{5} + 5 + 4 + 4 \sqrt{5}  }{1}  \\

⟹ \mathrm{x +  \frac{1}{x} } = 5 + 4 -  \cancel{4 \sqrt{5} } + 5 + 4 +  \cancel{4 \sqrt{5} } \\

⟹ \mathrm{x +  \frac{1}{x} } = 5 + 4 + 5 + 4 \\

⟹ \mathrm{x +  \frac{1}{x} } = 18 \\

Squaring on both sides using algebraic Identity (a+b)² = a²+2ab+b² we get

\mathrm { \bigg(x +  \frac{1}{x}  \bigg)^{2} } = (18 {)}^{2}  \\

⟹ \mathrm{ {x}^{2}  +  2( \cancel{x}) \bigg( \frac{1}{ \cancel{x}}  \bigg) +  \bigg( \frac{1}{x}  \bigg)^{2}  } = 324 \\

⟹ \mathrm{ {x}^{2} + 2 +  \frac{1}{ {x}^{2} } } = 324 \\

⟹ \mathrm{ {x}^{2}  +  \frac{1}{ {x}^{2} } } = 324 - 2 \\

⟹ \mathrm{ {x}^{2}  +  \frac{1}{ {x}^{2} } } = 322 \\  \\

 \mathrm{ \underline{Answer : } \: Hence, the \:  value \:  of \:  {x}^{2}  +  \frac{1}{ {x}^{2} } \: is \: 322. }

Used formulae:

  • (a+b)² = a²+2ab+b²

  • (a-b)² = a² -2ab +b²

  • (a-b)(a+b) = a² - b²

  • (a+b)(a-b) = a² - b²

Siddhi :)

Similar questions