Math, asked by aditidaulatani, 1 year ago

If x = 5+2√6 / 5−2√6 , find the value of 
(1)(x + 1/x)^2 
(2) (x − 1/x)^2


aditidaulatani: please answer the other questions which I posted were wrong by mistake so this the right question

Answers

Answered by Muskan1101
17
Here's your answer!!

_________________________________

It's given that,

 = > x = \frac{5 + 2 \sqrt{6} }{5 - 2 \sqrt{6} }

We will rationalise it ,

 = > \frac{5 + 2 \sqrt{6} }{5 - 2 \sqrt{6} } \times \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} }

 = > \frac{ {(5 + 2 \sqrt{6}) }^{2} }{ {(5)}^{2} - {(2 \sqrt{6}) }^{2} }

 = > \frac{25 + 24 + 20 \sqrt{6} }{25 - 24}

 = > {x} = 49 + 20 \sqrt{6}.....(a)

Now,

 = > \frac{1}{x} = \frac{1}{49 + 20 \sqrt{49} }

By rationalizing it ,we get :-

 = > \frac{1}{49 + 20 \sqrt{6} } \times \frac{49 - 20 \sqrt{6} }{49 - 20 \sqrt{6} }

 = > \frac{49 - 20 \sqrt{6} }{ {(49)}^{2} - {(20 \sqrt{6}) }^{2} }

 = > \frac{49 - 20 \sqrt{6} }{2401 - 2400}

 = > \frac{1}{x} = 49 - 20 \sqrt{6}....(b)

We will find the value of ,

 = > (x + \frac{1}{x} )

From a and b

 = > (x + \frac{1}{x}) = 49 + 20 \sqrt{6} + 49 - 20 \sqrt{6}

 - 20 \sqrt{6} and \: 20 \sqrt{6} get \: cancelled

 = > (x + \frac{1}{x} ) = 98

By squaring both side ,we get :-

 = > {(x + \frac{1}{x}) }^{2} = {(98)}^{2}

 = > {(x + \frac{1}{x} )}^{2} = 9604......(1 \: answer)

Now,

From a and b ,

 (x - \frac{1}{x}) = (49 + 20 \sqrt{6}) - (49 - 20 \sqrt{6} )

(x - \frac{1}{x}) = 49 + 20 \sqrt{6} - 49 + 20 \sqrt{6}

49 \: and \: - 49 \: get \: cancelled

(x - \frac{1}{x}) = 40 \sqrt{6}

By squaring both side ,we get :-

 {(x - \frac{1}{x} )}^{2} = {(40 \sqrt{6}) }^{2}

 {(x - \frac{1}{x} )}^{2} = 9600......(2 \: answer)

_______________________________

Hope it helps you!! :)
Answered by Ashishkumar098
14
<b > Ello!¡

• Check the attachment please.

Hope it helps!! :)

★ Be Brainly ★
Attachments:
Similar questions