Math, asked by tushardelhi1234babu, 1 month ago

if x = 5+2√6 find the value of √x +1/√x​

Answers

Answered by rakeshdubey33
0

x + 1/x = +23 or -23.

Step-by-step explanation:

Given :

x = 5 + 2√6.

To find :

The value of (√x + 1/√x).

Solution :

x \:  = 5 +  2\sqrt{6}  \\  \therefore \:  \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} }  \\  \therefore \:  \frac{1}{x}  =  \frac{1 \times (5 - 2 \sqrt{6} )}{(5 + 2 \sqrt{6} )(5 - 2 \sqrt{6} )}  \\  \therefore \:  \frac{1}{x}  =  \frac{5 - 2 \sqrt{6} }{ {5}^{2}  -  {(2 \sqrt{6} )}^{2} }  \\  \therefore \:  \frac{1}{x}  =  \frac{5 - 2 \sqrt{6} }{25 - 24}  = \:  \:  5 - 2 \sqrt{6}

Now,

x +  \frac{1}{x}  = 5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6}  \\  = x +  \frac{1}{x}  = 10

 {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}^{2}  = x +  \frac{1}{x}  + 2 \\  = {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}^{2}  = \: 10 + 2 = 12 \\  \therefore \: {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}  = \:  (+  - ) \sqrt{12}  \\   {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}  = \: ( +  - )2 \sqrt{3}

Hence, the answer.

Answered by Salmonpanna2022
1

Answer:

The value of √x + (1/√x) is 2√3.

Step-by-step explanation:

Given:

x = 5 + 2√6

To find:

Value of √x + (1/√x) = ?

Solution:

We have,

x = 5 + 2√6

It can be written as,

=> x = 3 + 2 + 2√6

=> x = (√3)^2 + (√2)^2 + 2 × √3 × √2

=> x = (√3 + √2)^2

=> √x = (√3 + √2)

since, 1/√x

= 1/(√3 + √2)

=> [1/(√3 + √2)]×[(√3 - √2)/(√3 - √2)]

=> [1(√3 - √2)]/[(√3 + √2)(√3 - √3)]

since,(a + b)(a - b) = a^2 - b^2

Where, a = √3 and b = √2.

=> (√3 - √2)/[(√3)^2 - (√2)^2]

=> (√3 - √2)/(3 - 2)

=> (√3 - √2)/1

=> √3 - √2

Therefore,

=> √x + (1/√x)

=> √3 + √2 + √3 - √2

=> 2√3

Hence, the value of √x + (1/√x) is 2√3.

Similar questions