If x = 5 - 2√6, find whether x + 1/ x
abhishekranjanp9wbkc:
10
Answers
Answered by
1
!! Hey Mate !!
your answer is ---
Given,
![x = 5 - 2 \sqrt{6} x = 5 - 2 \sqrt{6}](https://tex.z-dn.net/?f=x+%3D+5+-+2+%5Csqrt%7B6%7D+)
so,
![\frac{1}{x} = \frac{1}{(5 - 2 \sqrt{6)} } = 5 + 2 \sqrt{6} \frac{1}{x} = \frac{1}{(5 - 2 \sqrt{6)} } = 5 + 2 \sqrt{6}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx%7D+%3D+%5Cfrac%7B1%7D%7B%285+-+2+%5Csqrt%7B6%29%7D+%7D+%3D+5+%2B+2+%5Csqrt%7B6%7D+)
( rationalize it )
Now,
![x + \frac{1}{x} = 5 - 2 \sqrt{6} + 5 + 2 \sqrt{6} \\ \\ = 10 x + \frac{1}{x} = 5 - 2 \sqrt{6} + 5 + 2 \sqrt{6} \\ \\ = 10](https://tex.z-dn.net/?f=x+%2B+%5Cfrac%7B1%7D%7Bx%7D+%3D+5+-+2+%5Csqrt%7B6%7D+%2B+5+%2B+2+%5Csqrt%7B6%7D+%5C%5C+%5C%5C+%3D+10)
================
Hope it helps you
================
your answer is ---
Given,
so,
( rationalize it )
Now,
================
Hope it helps you
================
Similar questions