Math, asked by NikitaSingh10K, 7 days ago

If x = 5 + 2√6 then find the value of √x + 1/√x.​

Answers

Answered by armantripathy07
2

Given x=5−2

6

=3+2−2(

3

)(

2

)=(

3

2

)

2

x

=±(

3

2

)

x

+

x

1

=±(

3

2

+

3

2

1

)=±(

3

2

+

3−2

3

+

2

)=±(

3

2

+

3

+

2

)=±2

3

Answered by Salmonpanna2022
2

Answer:

The value of √x + (1/√x) is 2√3.

Step-by-step explanation:

Given:

x = 5 + 2√6

To find:

Value of √x + (1/√x) = ?

Solution:

We have,

x = 5 + 2√6

It can be written as,

=> x = 3 + 2 + 2√6

=> x = (√3)^2 + (√2)^2 + 2 × √3 × √2

=> x = (√3 + √2)^2

=> √x = (√3 + √2)

since, 1/√x

= 1/(√3 + √2)

=> [1/(√3 + √2)]×[(√3 - √2)/(√3 - √2)]

=> [1(√3 - √2)]/[(√3 + √2)(√3 - √3)]

since,(a + b)(a - b) = a^2 - b^2

Where, a = √3 and b = √2.

=> (√3 - √2)/[(√3)^2 - (√2)^2]

=> (√3 - √2)/(3 - 2)

=> (√3 - √2)/1

=> √3 - √2

Therefore,

=> √x + (1/√x)

=> √3 + √2 + √3 - √2

=> 2√3

Hence, the value of x + (1/x) is 23.

Similar questions