Math, asked by fahahajankakak, 5 months ago

If x = 5-2√6,
then find the value of x²+1/x²​

Answers

Answered by Anonymous
10

Given :-

\bullet \sf{x = 5 - 2 \sqrt{6} }

To find :-

x²+1/x²

According to the question,

\implies\sf{ \dfrac{1}{x} = \dfrac{1}{5 - 2 \sqrt{6} } \times \dfrac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} } }

\implies \sf{ \frac{1}{x} = \frac{5 + 2 \sqrt{6} }{25 - 24} = 5 + 2 \sqrt{6 }}

\begin{gathered}\implies\sf{ x + \dfrac{1}{ x} = 5 - 2 \sqrt{6} + 5 + 2 \sqrt{6} } \\\end{gathered}

\implies \sf{x + \frac{1}{x}}

Squaring on both the sides :

\begin{gathered}\implies \sf{ {x}^{2} + \dfrac{1}{ {x}^{2} } = {10}^{2} } \\ \\ \implies \sf{ {x}^{2} + \frac{1}{ {x}^{2}} + 2 \times x \times \frac{1}{ x} = 100} \\ \\ \implies \sf{{x}^{2} + \frac{1}{ {x}^{2} } + 2= 100 } \\ \\ \implies \sf{ {x}^{2} + \frac{1}{ {x}^{2} } = 100 - 2 } \\ \\ { \underline{ \boxed{\implies {\sf{ {x}^{2} + \frac{1}{ {x}^{2} } = 98}}}}} \orange\bigstar\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

Answered by Anonymous
42

Step-by-step explanation:

Given :

  • If x = 5 + 2√6

To Find :

  • the value of x²+1/x²

Solution :

x² = (5+2√6)²

= 5² + 2(5)(2√6) + (2√6)²

= 49 + 20√6

Then 1\x² = 1       

               ( 49 + 20√6)

Now, rationalising the denominator, we get,

 1               ×        49 - 20√6

49 + 20√6             49 - 20√6

  ______________________

=  49 - 20√6

Now, solve the equation

x² + 1/x² =  [ 49 + 20√6 ] + [ 49 - 20√6 ]

             =  49 + 20√6 + 49 - 20√6

= 49 + 49

             =  98

  • Hence The + 1/ is 98
Similar questions