Math, asked by laalchampak923, 2 months ago

If x =5+2√6, then Find ( x + 1/x)

Answers

Answered by SarcasticBunny
12

Given :-  

  • x = 5 + 2√6

To Find :-

  •  Find ( x + 1/x)

Solution :-

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{1}{5+ 2 \sqrt{6}}

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{1}{5 +2 \sqrt{6}} \times \dfrac{5- 2 \sqrt{6}}{ 5- 2 \sqrt{6}}

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{ 1 \times ( 5- 2 \sqrt{6})}{ ( 5+ 2 \sqrt{6}) \times ( 5- 2 \sqrt{6} )}

\sf : \; \implies 5 +  2 \sqrt{6} + \dfrac{ 5- 2 \sqrt{6}}{ (5)^{2}- ( 2 \sqrt{6})^{2}}

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{5- 2 \sqrt{6}}{ 25  -4 \times ( \sqrt{6})^{2}}

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{5- 2 \sqrt{6}}{25-4 \times 6}

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{5-2 \sqrt{6}}{25-24}

\sf : \; \implies 5 + 2 \sqrt{6} + \dfrac{5-2 \sqrt{6}}{1}

\sf : \; \implies 5 +2  \sqrt{6} + 5- 2 \sqrt{6}

\sf : \; \implies 5 + 5

\boxed{\bf{ \star \;\; 10 }}

Answered by sadnesslosthim
25

Given :-

  • If value of x is 5+2√6

To Find :-

  • Value of ( x + 1/x )

Solution :-

\sf \dashrightarrow x + \dfrac{1}{x}

\sf \dashrightarrow \bigg\{ 5 + 2\sqrt{6}  \bigg\} +  \bigg\{ \dfrac{1}{5 + 2\sqrt{6}} \bigg\}

\sf \dashrightarrow \bigg\{ 5 + 2\sqrt{6}  \bigg\} +  \bigg\{ \dfrac{1}{5 + 2\sqrt{6}} \times \dfrac{5 - 2\sqrt{6}}{5-2\sqrt{6}} \bigg\}

\sf \dashrightarrow \bigg\{ 5 + 2\sqrt{6}  \bigg\} +  \bigg\{ \dfrac{1( 5 - 2\sqrt{6})}{(5)^{2} - (2)^{2} \times (\sqrt{6})^{2} } \bigg\}

\sf \dashrightarrow \bigg\{ 5 + 2\sqrt{6}  \bigg\} +  \bigg\{ \dfrac{1( 5 - 2\sqrt{6})}{25 - 4 \times 6 } \bigg\}

\sf \dashrightarrow \bigg\{ 5 + 2\sqrt{6}  \bigg\} +  \bigg\{ \dfrac{1( 5 - 2\sqrt{6})}{25 - 24 } \bigg\}

\sf \dashrightarrow \bigg\{ 5 + 2\sqrt{6}  \bigg\} +  \bigg\{ \dfrac{1( 5 - 2\sqrt{6})}{1} \bigg\}

\sf \dashrightarrow 5 + 2\sqrt{6} + 5 - 2 \sqrt{6}

\begin{gathered}{ \underline{ \red{ \boxed{ \sf{ x + \dfrac{1}{x}= 10}}}}} \end{gathered}

Similar questions