Math, asked by jasmin91, 1 year ago

if x = 5+2√6 then find √x+1/√x​


sivaprasath: 2√3

Answers

Answered by sivaprasath
3

Answer:

2\sqrt{3}

Step-by-step explanation:

Given :

To find the value of , \sqrt{x} + \frac{1}{\sqrt{x} } if  x = 5 + 2\sqrt{6}

Solution :

 x = 5 + 2\sqrt{6}

 x = 3 + 2 + 2\sqrt{6}

 x = (\sqrt{3})^2 + (\sqrt{2})^2 + 2(\sqrt{3})(\sqrt{2})

 x = (\sqrt{3} + \sqrt{2})^2

Hence,

\sqrt{x}= \sqrt{3} + \sqrt{2}

_

\frac{1}{\sqrt{x}}= \frac{1}{\sqrt{3} + \sqrt{2}}

By taking conjugate, We get,

 = \frac{1}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}

 = \frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}

= \frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2}

= \frac{\sqrt{3}-\sqrt{2}}{3 - 2}

= \frac{\sqrt{3}-\sqrt{2}}{1}

\frac{1}{\sqrt{x}}= \sqrt{3}-\sqrt{2}

\sqrt{x} + \frac{1}{\sqrt{x} } = \sqrt{3} + \sqrt{2} + \sqrt{3} - \sqrt{2} = 2\sqrt{3}

\sqrt{x} + \frac{1}{\sqrt{x}}= 2\sqrt{3}

Similar questions