Math, asked by kaushiksantoshi837, 5 months ago

if x=5+2√6,then find x2+1/x2.​

Attachments:

Answers

Answered by Mɪʀᴀᴄʟᴇʀʙ
17

\LARGE{\sf{\underline{\underline{Solution:-}}}}

Given:-

 \sf{{x = 5 + 2\sqrt{6}}}

To Find:-

 \sf{{x^{2}+}}\sf\dfrac{1}{x^{2}}

As we know,

 (\sf{{x+}}\sf\dfrac{1}{x})^{2} \sf{{= x^{2}}}+\sf\dfrac{1}{x^{2}} \sf{{+2}}

So let us firstly find  \sf{{x+}}\sf\dfrac{1}{x}

 \sf{{x = 5 + 2\sqrt{6}}}

\implies \sf\dfrac{1}{x}=\sf\dfrac{1}{ 5 + 2\sqrt{6}}

Rationalizing Factor = 5 - 2√6

\implies \dfrac{1}{x}=\sf\dfrac{1}{ 5 + 2\sqrt{6}}\times\sf\dfrac{5 - 2\sqrt{6}}{ 5 - 2\sqrt{6}}

=\sf\dfrac{5 - 2\sqrt{6}}{(5)^{2}-(2\sqrt{6})^{2}}

=\sf\dfrac{5 - 2\sqrt{6}}{25 - 24}

=\sf\dfrac{5 - 2\sqrt{6}}{1}

So now,

 \sf{{x+}}\sf\dfrac{1}{x}

 \sf{{= 5 + 2\sqrt{6}}} \sf{{+ 5 - 2\sqrt{6}}}

 \sf{{= 5 + 5 + 2\sqrt{6} - 2\sqrt{6}}}

 \sf{{= 10}}

___________________________________

 (\sf{{x+}}\sf\dfrac{1}{x})^{2} \sf{{= x^{2}}}+\sf\dfrac{1}{x^{2}} \sf{{+2}}

 \implies \sf{{(10)^{2}}} \sf{{= x^{2}}}+\sf\dfrac{1}{x^{2}} \sf{{+2}}

 \implies \sf{{100}} \sf{{= x^{2}}}+\sf\dfrac{1}{x^{2}} \sf{{+2}}

 \implies \sf{{100-2}} \sf{{= x^{2}}}+\sf\dfrac{1}{x^{2}}

 \implies \sf{{ x^{2}}}+\sf\dfrac{1}{x^{2}} \sf{{=98}}

_____________________________________

Therefore,

  \sf{{x^{2}}}+\sf\dfrac{1}{x^{2}} \sf{{=98}}

Answered by Anonymous
2

 \large \sf \underline{ \underline{ \red{given : }}}

 \tt{x = 5 + 2 \sqrt{6} }

 \large \sf \underline{ \underline{ \red{to \: find : }}}

  \tt{x}^{2}  +  \frac{1}{ {x}^{2} }

 \large \sf \underline{ \underline{ \red{to \: know : }}}

\tt \boxed{ \pink{( {a + b) }^{2}  =  {a}^{2} +  {b}^{2}  + 2ab }}

Here ,

  • a = x

  • b = 1/x

 \large \sf \underline{ \underline{ \red{solution : }}} \:

Firstly , we will find 1/x.

 \tt{ \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} } }  \\  \\ \ \  \\  \sf{multiplying \: and \: dividing \: by \: (5 - 2 \sqrt{6}) } \\  \\  \\    = \tt\frac{1}{5 + 2 \sqrt{6} }   \:  \times  \:  \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }  \\  \\  \\  \tt{ =  \frac{5 - 2 \sqrt{6} }{ {5}^{2} -  ({2 \sqrt{6} )}^{2}  } } \\  \\  \\  \tt{ =  \frac{5 - 2 \sqrt{6} }{25 - 24} } \\  \\  \\  \implies \boxed{ \tt{  \frac{1}{x}  = 5 - 2 \sqrt{6} }}

━═━═━═━═━═━═━═━═━

 \rm{we \: will \: find \: (x +   { \frac{1}{x}) }^{2} }

  • x = 5 + 2√6

  • 1/x = 5 - 2√6

 \tt{(x +   { \frac{1}{x}) }^{2} } = (5 + \cancel{ 2 \sqrt{6}}  + 5 - \cancel{ 2 \sqrt{6}})^{2} \\  \\  \rm (by \: identity)..... \\ \\  \tt{ {x}^{2} +{ \frac{1}{x} }^{2} + 2( \cancel{x})( \frac{1}{ \cancel{x}}  )}  =  {10}^{2}  \\  \\  \\  \tt{ {x}^{2} +   \frac{1}{x {}^{2} } + 2 = 100   } \\  \\  \\  \boxed{ \tt{  \blue{{x}^{2} +  \frac{1}{ {x}^{2} }  } = \blue{ 98}}}

Similar questions