Math, asked by Vivashwan13092003, 1 year ago

If x=5+2√6,then show rhat √x + 1/√x=2√3

Attachments:

Answers

Answered by Anonymous
89
x=(√3)²+(√2)²+2.√3.√2
x=(√3+√2)²
√x=√3+√2

1/√x=1/√3+√2
1/√x=(1/√3+√2)*(√3-√2/√3-√2)
1/√x=√3-√2/(√3)²-(√2)²
1/√x=√3-√2/3-2
1/√x=√3-√2/1

√x+1/√x=√3+√2+√3-√2
=2√3

Anonymous: welcome
Answered by parmesanchilliwack
156

Answer:

Given,

x=5+2\sqrt{6}

=5+2\sqrt{3\times 2}

=5+2\times \sqrt{3}\times \sqrt{2}

=3+2+2\times \sqrt{3}\times \sqrt{2}

=(\sqrt{3})^2+(\sqrt{2})^2+2\times \sqrt{3}\times \sqrt{2}

=(\sqrt{3}+\sqrt{2})^2

Thus,

\sqrt{x}=\sqrt{3}+\sqrt{2}

\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{3}+\sqrt{2}}

=\frac{1}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}

=\frac{\sqrt{3}-\sqrt{2}}{3-2}

=\frac{\sqrt{3}-\sqrt{2}}{1}

=\sqrt{3}-\sqrt{2}

\sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}

Hence, proved....

Similar questions