Math, asked by rakeskumar68155, 3 months ago

If x = 5+ 2√6, then the value of ( x + 1/x) ^4 is​

Answers

Answered by amitsharma777222999
1

Step-by-step explanation:

x=5+2√6

1/x=5-2√6/(5+2√6)(5-2√6)

=5-2√6/25-24=5-2√6

x+1/x=5+2√6+5-2√6=10

(x+1/x)^4=(10)^4=10000

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = 5 + 2 \sqrt{6}

Now,

Consider,

\rm :\longmapsto\:\dfrac{1}{x}

 \rm \:  \:  =  \: \dfrac{1}{5 + 2 \sqrt{6} }

On rationalizing the denominator, we get

 \rm \:  \:  =  \: \dfrac{1}{5 + 2 \sqrt{6} }  \times \dfrac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }

 \rm \:  \:  =  \: \dfrac{5 - 2 \sqrt{6} }{ {(5)}^{2}  -  {(2 \sqrt{6})}^{2} }

 \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \: \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

 \rm \:  \:  =  \: \dfrac{5 - 2 \sqrt{6} }{25 - 24}

 \rm \:  \:  =  \: 5 - 2 \sqrt{6}

\bf\implies \:\dfrac{1}{x}  = 5 - 2 \sqrt{6}

Consider,

 \green{\bf :\longmapsto\:x + \dfrac{1}{x}}

 \rm \:  \:  =  \: 5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6}

 \rm \:  \:  =  \: 10

\bf\implies \:x + \dfrac{1}{x} = 10

Hence,

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x} \bigg) }^{4}

 \rm \:  \:  =  \:  {(10)}^{4}

 \rm \:  \:  =  \: 10000

 \purple{ \boxed{\bf\implies \:\: {\bigg(x + \dfrac{1}{x} \bigg) }^{4}  = 10000}}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions