Math, asked by Muskanmalik1411, 1 year ago

if x=5+2√6 ,y=1/x then find the value of x square and y square

Answers

Answered by ashishks1912
17

GIVEN :

If x=5+2\sqrt{6}, y=\frac{1}{x} then find the value of x^2+y^2

TO FIND :

The value of x^2+y^2

SOLUTION :

Given that the values are x=5+2\sqrt{6}, y=\frac{1}{x}

x=5+2\sqrt{6}

Squaring on both sides,

x^2=(5+2\sqrt{6})^2

By using the algebraic identity

(a+b)^2=a^2+2ab+b^2

x^2=5^2+2(5)(2\sqrt{6})+(2\sqrt{6})^2

=25+20\sqrt{6}+2^2(\sqrt{6})^2

By using the exponent property :

(ab)^m=a^mb^m

=25+20\sqrt{6}+4(6)

=25+20\sqrt{6}+24

x^2=49+20\sqrt{6}

Now y=\frac{1}{x}

y=\frac{1}{5+2\sqrt{6}}

Squaring on both sides

y^2=\frac{1}{x^2}=\frac{1}{(5+2\sqrt{6})^2}

y^2=\frac{1}{x^2}=\frac{1}{49+20\sqrt{6}}

Now rationalise the denominator we get

=\frac{1}{49+20\sqrt{6}}\times \frac{49-20\sqrt{6}}{49-20\sqrt{6}}

=\frac{49-20\sqrt{6}}{49^2-(20\sqrt{6})^2}

=\frac{49-20\sqrt{6}}{49^2-20^2(\sqrt{6})^2}

=\frac{49-20\sqrt{6}}{2401-400(6)}

=\frac{49-20\sqrt{6}}{2401-2400}

=\frac{49-20\sqrt{6}}{1}

y^2=\frac{1}{x^2}=49-20\sqrt{6}

Now we have to find the value of x^2+y^2

By substituting the values,

x^2+y^2=49+20\sqrt{6}+49-20\sqrt{6}

=98

x^2+y^2=98

∴  the value of x^2+y^2 is 98

Answered by maharmeenakshi5
2

here is the ans

hope it helps you

Attachments:
Similar questions