Math, asked by meenumalik198, 1 month ago

if x = √5-2 find the value of (x - 1/x)²​

Answers

Answered by sristi06
2

hope it helps you

MARK ME AS BRAINLIEST!!

Attachments:
Answered by Anonymous
25

Answer:

Given:-

If x = 5 - 2. Find the value of  ( x - \dfrac{1}{x} )² .

To Find:-

The value of  ( x - \dfrac{1}{x} )² .

Note:-

Here,  ( a - \dfrac{1}{a} )² = a² + \dfrac{1}{a²} - 2

( a - b )² = a² + b² - 2ab.

Solution:-

 \huge\red{x = √5 - 2}

 \huge\red{ \ \ \ \ The \ \ value \ \ of \ \ ( x - \dfrac{1}{x} )² = ?}

According to note first point~

 ( a - \dfrac{1}{a} )² = a² + \dfrac{1}{a²} - 2

Here, "a" = x~

▪︎ ( x - \dfrac{1}{x} )² = x² + \dfrac{1}{x²} - 2

Applying "x" value ( here we are finding  ( x - \dfrac{1}{x} )² , so we won't apply "x" value to it )~

▪︎ ( x - \dfrac{1}{x} )² = ( √5 - 2 )² + \dfrac{1}{( √5 - 2 )²} - 2

According to note second point ( here "a" = 5, "b" = 2 )~

▪︎ ( x - \dfrac{1}{x} )² = ( √5 )² + ( 2 )² - ( 2 × √5 × 2 ) + \dfrac{1}{(√5 )² + ( 2 )² - ( 2 × √5 × 2 )} - 2

As Under root will be canceled by square~

▪︎ ( x - \dfrac{1}{x} )² = 5 + ( 2 × 2 ) - 4√5 + \dfrac{1}{5 + ( 2 × 2 ) - 4√5} - 2

▪︎ ( x - \dfrac{1}{x} )² = 5 + 4 - 4√5 + \dfrac{1}{5 + 4 - 4√5} - 2

▪︎ ( x - \dfrac{1}{x} )² = 9 - 4√5 + \dfrac{1}{9 - 4√5} - 2

L.C.M. = 9 - 45~

▪︎ ( x - \dfrac{1}{x} )² = 9 - 4√5 × \dfrac{9 - 4√5}{9 - 4√5} + \dfrac{1}{9 - 4√5} - 2 × \dfrac{9 - 4√5}{9 - 4√5}

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{( 9 - 4√5 )²}{9 - 4√5} + \dfrac{1}{9 - 4√5} - \dfrac{2 × ( 9 - 4√5 )}{9 - 4√5}

According to note first point [ for opening ( 9 - 45 )² ]

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{( 9 )² + ( 4√5 )² - ( 2 × 9 × 4√5 )}{ 9 - 4√5} + \dfrac{1}{9 - 4√5} - \dfrac{2 × 9 - 2 × 4√5}{9 - 4√5}

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{( 9 × 9 ) + ( 4√5 )² - 72√5}{9 - 4√5} + \dfrac{1}{9 - 4√5} \dfrac{- 18 - 8√5}{9 - 4√5}

After multiplying sign in bracket~

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{81 + 16 × 5 - 72√5}{9 - 4√5} + \dfrac{1}{9 - 4√5} \dfrac{- 18 + 8√5}{9 - 4√5}

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{81 + 80 - 72√5}{9 - 4√5} + \dfrac{1}{9 - 4√5} \dfrac{- 18 + 8√5}{9 - 4√5}

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{161 - 72√5}{9 - 4√5} + \dfrac{1}{9 - 4√5} \dfrac{- 18 + 8√5}{9 - 4√5}

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{162 - 72√5}{9 - 4√5} \dfrac{- 18 + 8√5}{9 - 4√5}

After subtracting common terms~

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{144 - 64√5}{9 - 4√5}

▪︎ ( x - \dfrac{1}{x} )² = \dfrac{16 (9 - 4√5 )}{9 - 4√5}

After dividing~

▪︎ ( x - \dfrac{1}{x} )² = 16

 \huge\pink{The \ \ value \ \ of \ \ ( x - \dfrac{1}{x} )² = 16}

Answer:-

Hence, The value of  ( x - \dfrac{1}{x} )² = 16 .

:)

Similar questions