Math, asked by mchib9635, 8 months ago

If x = √5 +2, then x - 1/x equals

Answers

Answered by Rohith200422
6

Question:

If \: x = \sqrt{5} +2, then \: x - \frac{1}{x} \: equals.

To find:

To \: find \: the \: value \: of  \\ \big(x -  \frac{1}{x}\big)

Given:

x = \sqrt{5}+2

Answer:

The \: value \: is \:\boxed{\sf\pink{ \frac{ \sqrt{5} - 3 }{2} }}

Step-by-step explanation:

x = \sqrt{5}+2

\implies x -  \frac{1}{x}

\implies  \sqrt{5} + 2  -  \frac{1}{ \sqrt{5} + 2 }

 =  \frac{ {( \sqrt{5} + 2) }^{2}  - 1}{ \sqrt{5} + 2 }

 =  \frac{5 + 4 \sqrt{5} + 4 - 1 }{ \sqrt{5}  + 2}

 =   \frac{ 4\sqrt{5} +3 + 5  }{ \sqrt{5} + 2 }

 =   \frac{ 4\sqrt{5} +8  }{ \sqrt{5} + 2 }

 =  \frac{2(2 \sqrt{5} + 4) }{2( \sqrt{5} + 1 }

 =  \frac{2 \sqrt{5} + 4 }{ \sqrt{5} + 1 }

Rationalising by √5 - 1

 =  \frac{(2 \sqrt{5} + 4)( \sqrt{5}  - 1) }{( \sqrt{5} + 1)( \sqrt{5} - 1)  }

 =  \frac{10 - 2 \sqrt{5} + 4 \sqrt{5}  - 4 }{ {( \sqrt{5}) }^{2} -  {1}^{2}   }

 =  \frac{2 \sqrt{5} - 6 }{5 - 1}

 =  \frac{2 \sqrt{5} - 6 }{4}

 =  \frac{2( \sqrt{5} - 6) }{2(2)}

\implies  \boxed{\sf\pink{ \frac{ \sqrt{5} - 3 }{2} }}

\implies \boxed{ x -  \frac{1}{x}  =  \frac{ \sqrt{5} - 3 }{2} }

Answered by devyangipal
1

Answer:

√5+2 - 1/√5+2×√5-2/√5-2

(a+b) (a-b)= (a)²-(B)²

√5+2-√5+2/(√5)²-(2)²

√5+2-√3-2/5-4

√5+2-√5-2

2√5 is Ans.... thanku

Similar questions