Math, asked by Palash123445, 6 months ago

. If x = √5 + 2, then x- 1/x equals​

Answers

Answered by TheProphet
5

S O L U T I O N :

\underline{\bf{Given\::}}

x = √5 + 2

\underline{\bf{Explanation\::}}

Now, we get 1/x ;

\mapsto\tt{\dfrac{1}{x} =\dfrac{1}{\sqrt{5}  + 2} }

[Using by Rationalization method]\longrightarrow\tt{\sqrt{5} + 1 - \sqrt{5} -1}

\mapsto\tt{\dfrac{1}{\sqrt{5}  + 2} \times \dfrac{\sqrt{5} -2}{\sqrt{5} -2} }

\mapsto\tt{\dfrac{\sqrt{5} -2}{(\sqrt{5})^{2}  - (2)^{2}} \:\:\underbrace{\sf{using\:formula\:(a^{2} - b^{2})}}}

\mapsto\tt{\dfrac{\sqrt{5} -2}{5  -4}}

\mapsto\tt{\dfrac{\sqrt{5} -2}{1}}

Now,

\longrightarrow\tt{x-\dfrac{1}{x} }

\longrightarrow\tt{\sqrt{5} + 2 - \dfrac{\sqrt{5} -2}{1} }

\longrightarrow\tt{\sqrt{5} +2 - \sqrt{5} -2}

\longrightarrow\tt{\cancel{\sqrt{5}  - \sqrt{5}} \cancel{+2 -2}}

\longrightarrow\bf{00}

Thus,

The value of x-1/x will be 0 .

Similar questions