Math, asked by shrutiravindranath, 1 year ago

If x=5-√21/2 , find the value of x+1/x

Answers

Answered by Anonymous
12

  \sf given \: the \: value \: of \: x =  \frac{5 -  \sqrt{21} }{2}  \\  \\  \sf  \therefore \frac{1}{x}  =  \frac{2}{5 -  \sqrt{21} }  \\  \\  \sf on \: rationalising ,\  \\  \sf =  \frac{2}{5 -  \sqrt{21} }  \times  \frac{5 +  \sqrt{21} }{5 +  \sqrt{21} }  \\  \\  \sf =  \frac{2(5 +  \sqrt{21}) }{(5 -  \sqrt{21})(5 +  \sqrt{21} ) }  \\  \\  \sf =  \frac{2(5 +  \sqrt{21}) }{( {5)}^{2}  -  {( \sqrt{21} })^{2} }  \\  \\  \sf =  \frac{2(5 +  \sqrt{21}) }{25 - 21}  \\  \\  \sf =  \frac{ \cancel2(5 +  \sqrt{21} )}{ \cancel {4}^{2} }  \\  \\  \sf =  \frac{5 +  \sqrt{21} }{2}  \\  \\  \sf hence,  \: value \: of \: x +  \frac{1}{x } \:  is \\  \\ \sf  =  \frac{5 -  \sqrt{21} }{2}  +  \frac{5 +  \sqrt{21} }{2}  \\  \\  \sf =  \frac{5 -  \cancel{ \sqrt{21}} + 5 +  \cancel {\sqrt{21}  }}{2}  \\  \\  \sf =  \frac{10}{2}  =  \boxed5  \:

Similar questions