Math, asked by Mankuthemonkey01, 10 months ago

If x = 5 - √21, then the value of

\sf \frac{\sqrt{x}}{\sqrt{32 - 2x} - \sqrt{21}} is \sf\frac{\sqrt{a}\pm\sqrt{b}}{\sqrt{c}};

then a + b + c is? ​

Attachments:

Answers

Answered by RvChaudharY50
72

Given :-

  • x = (5 - √21)

To Find :-

  • (a + b + c) = ?

Formula used :-

  • (a² + b² - 2ab) = (a - b)²
  • √(a²) = a
  • (a² + b² + 2ab) = (a + b)²
  • (√a * √b) = √(ab)

Solution :-

❁❁ Refer To Image Now .. ❁❁

if we take (a + b) /c , we get, (a + b + c) = 12.

if we take (√a - √b) /√c , we get, (a + b + c) = 6.

______________________________

Attachments:
Answered by Anonymous
55

Given that, x = 5 - √21

Now, multiply it with 2

\implies\:\sf{x\:=\:5-\sqrt{21}} (×2)

\implies\:\sf{2x\:=\:10-2\sqrt{21}}

\implies\:\sf{2x\:=\:10-2\sqrt{7}\sqrt{3}}

Now, 7 + 3 = 10. Write it in the square root form

\implies\:\sf{2x\:=\:(\sqrt{7})^2+(\sqrt{3})^2-2\sqrt{7}\sqrt{3}}

Used identity: (a - b)²= a² + b² - 2ab

\implies\:\sf{x\:=\:\frac{1}{2}(\sqrt{7} - \sqrt{3})^2}

Take square root on both sides

\implies\:\sf{\sqrt{x}\:=\:\frac{1}{\sqrt{2}} \sqrt{(\sqrt{7}-\sqrt{3})^2}}

\implies\:\sf{\sqrt{x}\:=\:\frac{1}{\sqrt{2}} (\sqrt{7}-\sqrt{3})}

Now, substitute value of \sf{\sqrt{x}} in \sf \frac{\sqrt{x}}{\sqrt{32 - 2x} - \sqrt{21}}

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{ \sqrt{2} (\sqrt{32 - 2x} - \sqrt{21})}

Also, substitute value of x in it.

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{\sqrt{2} [\sqrt{32 - 2(5 -  \sqrt{21}] } - \sqrt{21})}

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{\sqrt{2} (\sqrt{32 - 10 +2 \sqrt{21}) } - \sqrt{21})}

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{\sqrt{2} (\sqrt{22 +2 \sqrt{21} } - \sqrt{21})}

Used identity: (a + b)² = a² + b² + 2ab

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{\sqrt{2} ( \sqrt{\sqrt{21 + 1}})^{2}  -  \sqrt{21} }

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{\sqrt{2} ({\sqrt{21}}  -  \sqrt{21} + 1) }

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{ \sqrt{2} ( + 1) }

\implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{ \sqrt{2} }

As per given condition,

\sf \frac{\sqrt{x}}{\sqrt{32 - 2x} - \sqrt{21}} is \sf\frac{\sqrt{a}\pm\sqrt{b}}{\sqrt{c}}

On solving \sf \frac{\sqrt{x}}{\sqrt{32 - 2x} - \sqrt{21}} we get, \implies\:\sf \frac{\sqrt{7} -  \sqrt{3} }{ \sqrt{2} }

On comparing we get,

\implies\:\sf{a\:=\:7,\:b\:=\:\pm 3\:and\:c\:=\:2}

Now, we have to find a + b + c.

So,

\implies\:\sf{a+b+c\:=\:7\pm 3+2\:=\:12 \:and\: 6}


Rythm14: wau :0
Anonymous: :p theku
Similar questions