if x=5-2root6 find x square+1/x square
Answers
Answered by
1
Hey friend,
Here is the answer you were looking for:
![x = 5 - 2 \sqrt{6} \\ \\ \frac{1}{x} = \frac{1}{5 - 2\sqrt{6} } \\ \\ on \: rationalizing \: the \: denominator \: we \: get \\ \\ \frac{1}{x} = \frac{1}{5 - 2 \sqrt{6} } \times \frac{5 + 2 \sqrt{6} }{5 +2 \sqrt{6} } \\ \\ using \: the \: identity \\ \\ \frac{1}{x} = \frac{5 + 2\sqrt{6} }{ {(5)}^{2} - {(2 \sqrt{6}) }^{2} } \\ \\ \frac{1}{x} = \frac{ 5 + 2\sqrt{6} }{25 - 24} \\ \\ \frac{1}{x} = 5 + 2 \sqrt{6} \\ \\ x + \frac{1}{x} = (5 - 2 \sqrt{6} ) + (5 + 2 \sqrt{6} ) \\ \\ x + \frac{1}{x} = 5 - 2 \sqrt{6} + 5 + 2 \sqrt{6} \\ \\ x + \frac{1}{x} = 5 + 5 \\ \\ x + \frac{1}{x} = 10 \\ \\ squaring \: both \: the \: side \\ \\ {(x + \frac{1}{x} )}^{2} = {(10)}^{2} \\ \\ {x}^{2} + { (\frac{1}{x} )}^{2} + 2 \times x \times \frac{1}{x} = 100 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 100 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 100 - 2 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 98 x = 5 - 2 \sqrt{6} \\ \\ \frac{1}{x} = \frac{1}{5 - 2\sqrt{6} } \\ \\ on \: rationalizing \: the \: denominator \: we \: get \\ \\ \frac{1}{x} = \frac{1}{5 - 2 \sqrt{6} } \times \frac{5 + 2 \sqrt{6} }{5 +2 \sqrt{6} } \\ \\ using \: the \: identity \\ \\ \frac{1}{x} = \frac{5 + 2\sqrt{6} }{ {(5)}^{2} - {(2 \sqrt{6}) }^{2} } \\ \\ \frac{1}{x} = \frac{ 5 + 2\sqrt{6} }{25 - 24} \\ \\ \frac{1}{x} = 5 + 2 \sqrt{6} \\ \\ x + \frac{1}{x} = (5 - 2 \sqrt{6} ) + (5 + 2 \sqrt{6} ) \\ \\ x + \frac{1}{x} = 5 - 2 \sqrt{6} + 5 + 2 \sqrt{6} \\ \\ x + \frac{1}{x} = 5 + 5 \\ \\ x + \frac{1}{x} = 10 \\ \\ squaring \: both \: the \: side \\ \\ {(x + \frac{1}{x} )}^{2} = {(10)}^{2} \\ \\ {x}^{2} + { (\frac{1}{x} )}^{2} + 2 \times x \times \frac{1}{x} = 100 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 100 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 100 - 2 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 98](https://tex.z-dn.net/?f=x+%3D+5+-+2+%5Csqrt%7B6%7D++%5C%5C++%5C%5C++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B1%7D%7B5+-++2%5Csqrt%7B6%7D+%7D++%5C%5C++%5C%5C+on+%5C%3A+rationalizing+%5C%3A+the+%5C%3A+denominator+%5C%3A+we+%5C%3A+get+%5C%5C++%5C%5C++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B1%7D%7B5+-+2+%5Csqrt%7B6%7D+%7D++%5Ctimes++%5Cfrac%7B5+%2B+2+%5Csqrt%7B6%7D+%7D%7B5+%2B2++%5Csqrt%7B6%7D+%7D++%5C%5C++%5C%5C+using+%5C%3A+the+%5C%3A+identity+%5C%5C++%5C%5C++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B5+%2B++2%5Csqrt%7B6%7D+%7D%7B+%7B%285%29%7D%5E%7B2%7D+-++%7B%282+%5Csqrt%7B6%7D%29+%7D%5E%7B2%7D++%7D++%5C%5C++%5C%5C+++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B+5+%2B++2%5Csqrt%7B6%7D+%7D%7B25+-+24%7D++%5C%5C++%5C%5C++%5Cfrac%7B1%7D%7Bx%7D++%3D++5+%2B+2+%5Csqrt%7B6%7D++%5C%5C++%5C%5C+x+%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D+%285+-+2+%5Csqrt%7B6%7D+%29++%2B+%285+%2B+2+%5Csqrt%7B6%7D+%29+%5C%5C++%5C%5C+x+%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D+5+-+2+%5Csqrt%7B6%7D++%2B+5++%2B+2+%5Csqrt%7B6%7D++%5C%5C++%5C%5C+x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%3D++5+%2B+5+%5C%5C++%5C%5C+x+%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D+10+%5C%5C++%5C%5C+squaring+%5C%3A+both+%5C%3A+the+%5C%3A+side+%5C%5C++%5C%5C++%7B%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29%7D%5E%7B2%7D++%3D++%7B%2810%29%7D%5E%7B2%7D++%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B++%7B+%28%5Cfrac%7B1%7D%7Bx%7D+%29%7D%5E%7B2%7D++%2B+2+%5Ctimes+x+%5Ctimes++%5Cfrac%7B1%7D%7Bx%7D++%3D+100+%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%2B+2+%3D+100+%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%3D+100+-+2+%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B+%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%3D+98)
Hope this helps!!!
@Mahak24
Thanks...
☺☺
Here is the answer you were looking for:
Hope this helps!!!
@Mahak24
Thanks...
☺☺
Similar questions