Math, asked by jayalaxmi624, 5 hours ago

if x=5+2root6 then find x+1/x​

Answers

Answered by amansharma264
4

EXPLANATION.

⇒ x = 5 + 2√6.

As we know that,

We can write equation as,

⇒ 1/x = 1/[5 + 2√6].

Rationalize the equation, we get.

⇒ 1/x = 1/[5 + 2√6] x [5 - 2√6]/[5 - 2√6].

⇒ 1/x = [5 - 2√6]/[(5)² - (2√6)²].

⇒ 1/x = [5 - 2√6]/[25 - 24].

⇒ 1/x = [5 - 2√6].

To find :

Value of (x + 1/x).

Put the values in the equation, we get.

⇒ (x + 1/x) = [5 + 2√6 + 5 - 2√6].

(x + 1/x) = 10.

Answered by itzMeGunjan
2

Topic :-

• Calculation of Rational Numbers

Question :-

\rm{if \: x = 5+ 2 \sqrt{6}\: then \: find \: x + \frac{1}{x}}

Solution :-

 \:  \:  \:  \:  \:  \:  \:  \rm{x = 5 + 2 \sqrt{6} }

By Rationalising

  \:  \:  \:  \:  \:  \: \large{ \frac{1}{x}  =  \frac{1}{ \red{5 + 2 \sqrt{6} }}  \times  \frac{5 - 2 \sqrt{6} }{ \red{5 - 2 \sqrt{6} }} }

As we know a² - b² = (a+b) (a-b)

  \:  \:  \:  \:  \frac{1}{x} =   \large{\frac{5 - 2 \sqrt{6} }{(5) {}^{2} - (2 \sqrt{6} ) {}^{2}  } } \\   \:  \:  \:  \:   \frac{1}{x} =  \large{ \frac{5 - 2 \sqrt{6} }{25 - 24} } \\   \hookrightarrow  \boxed{ \frac{1}{x}  = 5 - 2 \sqrt{6}  }

Put value of x and 1/x in x + 1/x

 \:  \:  \:  \:  \:  \:  :  \:  \rightarrow \red{x +  \frac{1}{x} } \\  \implies \large \: 5 +  \cancel{2 \sqrt{6}}  + 5 - \cancel{ 2 \sqrt{6} } \\  \implies \large{5 + 5} \\  \hookrightarrow   \boxed{\underline{ \green{\huge{10}}}}

Similar questions