Math, asked by HardikSharma6060, 1 month ago

if x = √5-√3/√5+√3 and y =√5+√3/√5-√3 find the value of x2 +y2

Answers

Answered by tennetiraj86
3

Step-by-step explanation:

Given :-

x = √5-√3/√5+√3 and

y =√5+√3/√5-√3

To Find:-

Find the value of x²+y²?

Solution:-

Given that :

x = (√5-√3)/(√5+√3)

The denominator = √5+√3

The Rationalising factor of√5+√3 is √5-√3

On Rationalising the denominator then

=> x=[(√5-√3)/(√5+√3)]×[(√5-√3)/(√5-√3)]

=> x = [(√5-√3)(√5-√3)]/[(√5+√3)(√5-√3)]

=> x = (√5-√3)²/[(√5+√3)(√5-√3)]

=> x = (√5-√3)²/[(√5)²-(√3)²]

Since (a+b)(a-b) = a² - b²

Where , a = √5 and b =√3

=> x = (√5-√3)²/(5-3)

=> x = (√5-√3)²/2

=> x = [(√5)²-2(√5)(√3)+(√3)²]/2

Since (a-b)² = a²-2ab+b²

=> x = (5-2√15+3)/2

=> x = (8-2√15)/2

=> x = 2(4-√15)/2

=> x = (4-√15)/1

=> x = 4-√15

On squaring both sides then

=> x² = (4-√15)²

=> x² = 4²-2(4)(√15)+(√15)²

Since (a-b)² = a²-2ab+b²

=> x² = 16-8√15+15

=> x² = 31-8√15 -----------------(1)

and

given that

y = (√5+√3)/(√5-√3)

The denominator = √5-√3

The Rationalising factor of√5-√3 is √5+√3

On Rationalising the denominator then

=>y=[(√5+√3)/(√5-√3)]×[(√5+√3)/(√5+√3)]

=> y = [(√5+√3)(√5+√3)]/[(√5-√3)(√5+√3)]

=> y = (√5+√3)²/[(√5+√3)(√5-√3)]

=> y = (√5+√3)²/[(√5)²-(√3)²]

Since (a+b)(a-b) = a² - b²

Where , a = √5 and b =√3

=> y = (√5+√3)²/(5-3)

=> y = (√5+√3)²/2

=> y = [(√5)²+2(√5)(√3)+(√3)²]/2

Since (a+b)² = a²+2ab+b²

=> y = (5+2√15+3)/2

=> y = (8+2√15)/2

=> y = 2(4+√15)/2

=> y = (4+√15)/1

=> y = 4+√15

On squaring both sides then

=> y² = (4+√15)²

=> y² = 4²+2(4)(√15)+(√15)²

Since (a+b)² = a²+2ab+b²

=> y² = 16+8√15+15

=> y² = 31+8√15 -----------------(2)

On adding (1) & (2) then

x²+y² = (31-8√15)+(31+8√15)

=> x²+y² = (31+31)+(8√15-8√15)

=> x²+y² = 62+0

=> x²+y² = 62

Answer:-

The value of x²+y² for the given problem is 62

Used formulae:-

  • (a+b)² = a²+2ab+b²
  • (a-b)² = a²-2ab+b²
  • (a+b)(a-b) = a² - b²
  • The Rationalising factor of√a+√b is √a-√b
  • The Rationalising factor of√a-√b is √a+√b
Similar questions