If x=5-√3/5+√3 and y=5+√3/5-√3, show that x-y =-10√3/ 11
Answers
Answered by
6
Question
If x=(5-√3)/(5+√3 )and y=(5+√3)/(5-√3) show that x-y = -10√3/ 11
Solution
Given :-
- Value of x = (5-√3)/(5+√3 )
- Value of y = (5+√3)/(5-√3 )
Show That:-
- x-y = -10√3/ 11
Explanation
First rationalize Denominator of x
==> x = (5-√3)(5-√3)/(5+√3 )(5-√3)
==>x = (25 + 3 - 2 * 5 * √3)/(5²-√3²)
==>x = (28 - 10√3)/(25-3)
==> x = (28-10√3)/22
Now, rationalize Denominator of y
==>y = (5+√3)(5+√3)/(5-√3 )(5+√3)
==>y = (25 + 3 + 2 * 5 * √3)/(5²-√3²)
==>y = (28 + 10√3)/(25-3)
==>y = (28 + 10√3)/22
Now, calculate (x - y)
==> x - y
keep New value of x & y
==> [ (28-10√3)/22 ] - [ (28 + 10√3)/22 ]
==> [ 28 - 10√3 - 28 - 10√3]/22
==> -20√3/22
==> -10√3/11
That's proved .
_______________
Similar questions